End of training
Browse files- README.md +4 -4
- amazing-logos-v4.ckpt +3 -0
- checkpoint-1200000/optimizer.bin +3 -0
- checkpoint-1200000/random_states_0.pkl +3 -0
- checkpoint-1200000/scaler.pt +3 -0
- checkpoint-1200000/scheduler.bin +3 -0
- checkpoint-1200000/unet/config.json +66 -0
- checkpoint-1200000/unet/diffusion_pytorch_model.bin +3 -0
- checkpoint-400000/optimizer.bin +1 -1
- checkpoint-400000/random_states_0.pkl +1 -1
- checkpoint-400000/scaler.pt +1 -1
- checkpoint-400000/scheduler.bin +1 -1
- checkpoint-400000/unet/config.json +1 -1
- checkpoint-400000/unet/diffusion_pytorch_model.bin +1 -1
- checkpoint-800000/optimizer.bin +1 -1
- checkpoint-800000/random_states_0.pkl +1 -1
- checkpoint-800000/scaler.pt +1 -1
- checkpoint-800000/scheduler.bin +1 -1
- checkpoint-800000/unet/config.json +1 -1
- checkpoint-800000/unet/diffusion_pytorch_model.bin +1 -1
- convert_diffusers_to_original_stable_diffusion.py +333 -0
- model_index.json +1 -1
- safety_checker/config.json +1 -1
- text_encoder/config.json +1 -1
- unet/config.json +1 -1
- unet/diffusion_pytorch_model.bin +1 -1
- vae/config.json +1 -1
- val_imgs_grid.png +2 -2
README.md
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
|
2 |
---
|
3 |
license: creativeml-openrail-m
|
4 |
-
base_model:
|
5 |
datasets:
|
6 |
- iamkaikai/amazing_logos_v4
|
7 |
tags:
|
@@ -14,7 +14,7 @@ inference: true
|
|
14 |
|
15 |
# Text-to-image finetuning - iamkaikai/amazing-logos-v4
|
16 |
|
17 |
-
This pipeline was finetuned from **
|
18 |
|
19 |
![val_imgs_grid](./val_imgs_grid.png)
|
20 |
|
@@ -37,7 +37,7 @@ image.save("my_image.png")
|
|
37 |
|
38 |
These are the key hyperparameters used during training:
|
39 |
|
40 |
-
* Epochs:
|
41 |
* Learning rate: 1e-06
|
42 |
* Batch size: 1
|
43 |
* Gradient accumulation steps: 1
|
@@ -45,4 +45,4 @@ These are the key hyperparameters used during training:
|
|
45 |
* Mixed-precision: fp16
|
46 |
|
47 |
|
48 |
-
More information on all the CLI arguments and the environment are available on your [`wandb` run page](https://wandb.ai/iam-kai-kai/text2image-fine-tune/runs/
|
|
|
1 |
|
2 |
---
|
3 |
license: creativeml-openrail-m
|
4 |
+
base_model: iamkaikai/amazing-logos-v4
|
5 |
datasets:
|
6 |
- iamkaikai/amazing_logos_v4
|
7 |
tags:
|
|
|
14 |
|
15 |
# Text-to-image finetuning - iamkaikai/amazing-logos-v4
|
16 |
|
17 |
+
This pipeline was finetuned from **iamkaikai/amazing-logos-v4** on the **iamkaikai/amazing_logos_v4** dataset. Below are some example images generated with the finetuned pipeline using the following prompts: ['Simple elegant logo for Mandarin Oriental, Fan Hong kong Lines Paper, Hospitality, successful vibe, minimalist, thought-provoking, abstract, recognizable, relatable, sharp, vector art, even edges, black and white', 'Simple elegant logo for AltVest Investments, alternative investments financial services, Finance, successful vibe, minimalist, thought-provoking, abstract, recognizable, relatable, sharp, vector art, even edges', 'Simple elegant logo for PeckCerativeHorz2.jpg, peck horizontal trends branding bold photography analysis packaging vertical products circle discovery identity color creative exhibition direction P graphics julian research, , successful vibe, minimalist, thought-provoking, abstract, recognizable, relatable, sharp, vector art, even edges', "Simple elegant logo for Johns Creek Shirts, printing T's art Apparel screen tshirt summer T t shirts, Apparel, successful vibe, minimalist, thought-provoking, abstract, recognizable, relatable, sharp, vector art, even edges", 'Simple elegant logo for MGD, Human Circle MGD dots Resources SRP 3D brown, Human Resources, successful vibe, minimalist, thought-provoking, abstract, recognizable, relatable, sharp, vector art, even edges', 'Simple elegant logo for Indooroopilly Uniting Church, abstract initials people swirl letter I letter U letter C giving community soft friendly purple blue red, Religious, successful vibe, minimalist, thought-provoking, abstract, recognizable, relatable, sharp, vector art, even edges', 'Simple elegant logo for Hacker, Douglas, & Company, accountant Hollywood law H filmstrip attorney HDC film, law, successful vibe, minimalist, thought-provoking, abstract, recognizable, relatable, sharp, vector art, even edges', 'Simple elegant logo for Windmill unused #5, windmill property community shapes quilt blades houses colorful carlsbad homes circle whimsical estate housing real, housing development, successful vibe, minimalist, thought-provoking, abstract, recognizable, relatable, sharp, vector art, even edges', 'Simple elegant logo for The Duck Store, track track and field sports athletics tree logo badge, Sports Apparel, successful vibe, minimalist, thought-provoking, abstract, recognizable, relatable, sharp, vector art, even edges', 'Simple elegant logo for InGenious Fitness, G Ball Green Blue, Fitness, successful vibe, minimalist, thought-provoking, abstract, recognizable, relatable, sharp, vector art, even edges', 'Simple elegant logo for KickCharge Creative, seating safety man driver person figure hardhat S initial sign, Transportation, successful vibe, minimalist, thought-provoking, abstract, recognizable, relatable, sharp, vector art, even edges', 'Simple elegant logo for Chickasaw Nation, water drop laundry, Commercial Laundry Services, successful vibe, minimalist, thought-provoking, abstract, recognizable, relatable, sharp, vector art, even edges', 'Simple elegant logo for NBA Properties, Inc., basketball sports branding team entertainment philadelphia star patriotic, Sports Entertainment, successful vibe, minimalist, thought-provoking, abstract, recognizable, relatable, sharp, vector art, even edges', 'Simple elegant logo for North Asheville Tailgate Market Veggie Sub Mark, culinary cheese Initials combo organic serif vegetable radish Farmers eggplant inspirations2023 tailgate food market submark asheville farm kale modern unique sanserif veggie , farmers market, culinary, food, retail, successful vibe, minimalist, thought-provoking, abstract, recognizable, relatable, sharp, vector art, even edges', 'Simple elegant logo for A. Diethelm, A Circle Line Switzerland Triangle, Painting Tools and Supplies, successful vibe, minimalist, thought-provoking, abstract, recognizable, relatable, sharp, vector art, even edges, black and white', 'Simple elegant logo for Grupo Altair Publicidad, Circle Lines Venezuela, Publishing, successful vibe, minimalist, thought-provoking, abstract, recognizable, relatable, sharp, vector art, even edges, black and white']:
|
18 |
|
19 |
![val_imgs_grid](./val_imgs_grid.png)
|
20 |
|
|
|
37 |
|
38 |
These are the key hyperparameters used during training:
|
39 |
|
40 |
+
* Epochs: 4
|
41 |
* Learning rate: 1e-06
|
42 |
* Batch size: 1
|
43 |
* Gradient accumulation steps: 1
|
|
|
45 |
* Mixed-precision: fp16
|
46 |
|
47 |
|
48 |
+
More information on all the CLI arguments and the environment are available on your [`wandb` run page](https://wandb.ai/iam-kai-kai/text2image-fine-tune/runs/z0e685b8).
|
amazing-logos-v4.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d14e7f9f8ac0e8b8a5c03ca427227231600272c14abc63425a3514374ca5bd96
|
3 |
+
size 3851910203
|
checkpoint-1200000/optimizer.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:35c90c20c1070026dfcf03c8e840d8ba2d1782bbb5665dc2e436d93b6fd5daab
|
3 |
+
size 6876749715
|
checkpoint-1200000/random_states_0.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6a3c9425ad8250aaa3a1064f5d8322a327ea791be152d63a3297330b7aefde10
|
3 |
+
size 14727
|
checkpoint-1200000/scaler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:35fdd6a9e94c346880769a6b076e39d83d0ad76b0e78d4f6bc05c3ced87e4213
|
3 |
+
size 557
|
checkpoint-1200000/scheduler.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c35b14e050a8d7886fa6a9eccbdddea8acf8380950b2ec23435707e664fc94e5
|
3 |
+
size 563
|
checkpoint-1200000/unet/config.json
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "UNet2DConditionModel",
|
3 |
+
"_diffusers_version": "0.20.0.dev0",
|
4 |
+
"_name_or_path": "iamkaikai/amazing-logos-v4",
|
5 |
+
"act_fn": "silu",
|
6 |
+
"addition_embed_type": null,
|
7 |
+
"addition_embed_type_num_heads": 64,
|
8 |
+
"addition_time_embed_dim": null,
|
9 |
+
"attention_head_dim": 8,
|
10 |
+
"attention_type": "default",
|
11 |
+
"block_out_channels": [
|
12 |
+
320,
|
13 |
+
640,
|
14 |
+
1280,
|
15 |
+
1280
|
16 |
+
],
|
17 |
+
"center_input_sample": false,
|
18 |
+
"class_embed_type": null,
|
19 |
+
"class_embeddings_concat": false,
|
20 |
+
"conv_in_kernel": 3,
|
21 |
+
"conv_out_kernel": 3,
|
22 |
+
"cross_attention_dim": 768,
|
23 |
+
"cross_attention_norm": null,
|
24 |
+
"down_block_types": [
|
25 |
+
"CrossAttnDownBlock2D",
|
26 |
+
"CrossAttnDownBlock2D",
|
27 |
+
"CrossAttnDownBlock2D",
|
28 |
+
"DownBlock2D"
|
29 |
+
],
|
30 |
+
"downsample_padding": 1,
|
31 |
+
"dual_cross_attention": false,
|
32 |
+
"encoder_hid_dim": null,
|
33 |
+
"encoder_hid_dim_type": null,
|
34 |
+
"flip_sin_to_cos": true,
|
35 |
+
"freq_shift": 0,
|
36 |
+
"in_channels": 4,
|
37 |
+
"layers_per_block": 2,
|
38 |
+
"mid_block_only_cross_attention": null,
|
39 |
+
"mid_block_scale_factor": 1,
|
40 |
+
"mid_block_type": "UNetMidBlock2DCrossAttn",
|
41 |
+
"norm_eps": 1e-05,
|
42 |
+
"norm_num_groups": 32,
|
43 |
+
"num_attention_heads": null,
|
44 |
+
"num_class_embeds": null,
|
45 |
+
"only_cross_attention": false,
|
46 |
+
"out_channels": 4,
|
47 |
+
"projection_class_embeddings_input_dim": null,
|
48 |
+
"resnet_out_scale_factor": 1.0,
|
49 |
+
"resnet_skip_time_act": false,
|
50 |
+
"resnet_time_scale_shift": "default",
|
51 |
+
"sample_size": 64,
|
52 |
+
"time_cond_proj_dim": null,
|
53 |
+
"time_embedding_act_fn": null,
|
54 |
+
"time_embedding_dim": null,
|
55 |
+
"time_embedding_type": "positional",
|
56 |
+
"timestep_post_act": null,
|
57 |
+
"transformer_layers_per_block": 1,
|
58 |
+
"up_block_types": [
|
59 |
+
"UpBlock2D",
|
60 |
+
"CrossAttnUpBlock2D",
|
61 |
+
"CrossAttnUpBlock2D",
|
62 |
+
"CrossAttnUpBlock2D"
|
63 |
+
],
|
64 |
+
"upcast_attention": false,
|
65 |
+
"use_linear_projection": false
|
66 |
+
}
|
checkpoint-1200000/unet/diffusion_pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:371d6a5067de00b71d70d4077d09fdbba70a6f423085cd1f83807f9cf6f82f32
|
3 |
+
size 3438375973
|
checkpoint-400000/optimizer.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 6876749715
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b72c9153a419abe1063812ab8f9768418d386d614adb81dc766a4d0d99db0d4d
|
3 |
size 6876749715
|
checkpoint-400000/random_states_0.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 14727
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3342a8754f610bf7744be6e8783b322515e68d04d198d16b3163b548520a86b5
|
3 |
size 14727
|
checkpoint-400000/scaler.pt
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 557
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:575394dfc035b75e1a186ac3cc3d436bf93f27d1a109f1d8e0c349834f6133b7
|
3 |
size 557
|
checkpoint-400000/scheduler.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 563
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b62ed99e252fdcea888d62cdd6f58a2dd9cc4e84976c03d70e6505bdaeb1f252
|
3 |
size 563
|
checkpoint-400000/unet/config.json
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
{
|
2 |
"_class_name": "UNet2DConditionModel",
|
3 |
"_diffusers_version": "0.20.0.dev0",
|
4 |
-
"_name_or_path": "
|
5 |
"act_fn": "silu",
|
6 |
"addition_embed_type": null,
|
7 |
"addition_embed_type_num_heads": 64,
|
|
|
1 |
{
|
2 |
"_class_name": "UNet2DConditionModel",
|
3 |
"_diffusers_version": "0.20.0.dev0",
|
4 |
+
"_name_or_path": "iamkaikai/amazing-logos-v4",
|
5 |
"act_fn": "silu",
|
6 |
"addition_embed_type": null,
|
7 |
"addition_embed_type_num_heads": 64,
|
checkpoint-400000/unet/diffusion_pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 3438375973
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3029dd34de28ad2c0e5aa6b18365afac7704bbe951091fdb34353562fc103130
|
3 |
size 3438375973
|
checkpoint-800000/optimizer.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 6876749715
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:812de1a8f812dbfb8af750aef4082c58c8780f3152129a436b2d56b68b175175
|
3 |
size 6876749715
|
checkpoint-800000/random_states_0.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 14727
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a9aa89cba07bdc72192c00a1f236a7bd4e8207bc482b0d950c8a592da1fd6815
|
3 |
size 14727
|
checkpoint-800000/scaler.pt
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 557
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:331252f87fa8ff0b2c621d32a7512699b4e7d557727e475f4272397bee489206
|
3 |
size 557
|
checkpoint-800000/scheduler.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 563
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6f7ff67d9eb162b86b693775f482793e541511650ac6fdeb629ff82edbc18037
|
3 |
size 563
|
checkpoint-800000/unet/config.json
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
{
|
2 |
"_class_name": "UNet2DConditionModel",
|
3 |
"_diffusers_version": "0.20.0.dev0",
|
4 |
-
"_name_or_path": "/amazing-logos-v4
|
5 |
"act_fn": "silu",
|
6 |
"addition_embed_type": null,
|
7 |
"addition_embed_type_num_heads": 64,
|
|
|
1 |
{
|
2 |
"_class_name": "UNet2DConditionModel",
|
3 |
"_diffusers_version": "0.20.0.dev0",
|
4 |
+
"_name_or_path": "iamkaikai/amazing-logos-v4",
|
5 |
"act_fn": "silu",
|
6 |
"addition_embed_type": null,
|
7 |
"addition_embed_type_num_heads": 64,
|
checkpoint-800000/unet/diffusion_pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 3438375973
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e6c6f5905767ad5667017f5c77b8c8876d554a207ffa040cbf7e8b358225d9b8
|
3 |
size 3438375973
|
convert_diffusers_to_original_stable_diffusion.py
ADDED
@@ -0,0 +1,333 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Script for converting a HF Diffusers saved pipeline to a Stable Diffusion checkpoint.
|
2 |
+
# *Only* converts the UNet, VAE, and Text Encoder.
|
3 |
+
# Does not convert optimizer state or any other thing.
|
4 |
+
|
5 |
+
import argparse
|
6 |
+
import os.path as osp
|
7 |
+
import re
|
8 |
+
|
9 |
+
import torch
|
10 |
+
from safetensors.torch import load_file, save_file
|
11 |
+
|
12 |
+
|
13 |
+
# =================#
|
14 |
+
# UNet Conversion #
|
15 |
+
# =================#
|
16 |
+
|
17 |
+
unet_conversion_map = [
|
18 |
+
# (stable-diffusion, HF Diffusers)
|
19 |
+
("time_embed.0.weight", "time_embedding.linear_1.weight"),
|
20 |
+
("time_embed.0.bias", "time_embedding.linear_1.bias"),
|
21 |
+
("time_embed.2.weight", "time_embedding.linear_2.weight"),
|
22 |
+
("time_embed.2.bias", "time_embedding.linear_2.bias"),
|
23 |
+
("input_blocks.0.0.weight", "conv_in.weight"),
|
24 |
+
("input_blocks.0.0.bias", "conv_in.bias"),
|
25 |
+
("out.0.weight", "conv_norm_out.weight"),
|
26 |
+
("out.0.bias", "conv_norm_out.bias"),
|
27 |
+
("out.2.weight", "conv_out.weight"),
|
28 |
+
("out.2.bias", "conv_out.bias"),
|
29 |
+
]
|
30 |
+
|
31 |
+
unet_conversion_map_resnet = [
|
32 |
+
# (stable-diffusion, HF Diffusers)
|
33 |
+
("in_layers.0", "norm1"),
|
34 |
+
("in_layers.2", "conv1"),
|
35 |
+
("out_layers.0", "norm2"),
|
36 |
+
("out_layers.3", "conv2"),
|
37 |
+
("emb_layers.1", "time_emb_proj"),
|
38 |
+
("skip_connection", "conv_shortcut"),
|
39 |
+
]
|
40 |
+
|
41 |
+
unet_conversion_map_layer = []
|
42 |
+
# hardcoded number of downblocks and resnets/attentions...
|
43 |
+
# would need smarter logic for other networks.
|
44 |
+
for i in range(4):
|
45 |
+
# loop over downblocks/upblocks
|
46 |
+
|
47 |
+
for j in range(2):
|
48 |
+
# loop over resnets/attentions for downblocks
|
49 |
+
hf_down_res_prefix = f"down_blocks.{i}.resnets.{j}."
|
50 |
+
sd_down_res_prefix = f"input_blocks.{3*i + j + 1}.0."
|
51 |
+
unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix))
|
52 |
+
|
53 |
+
if i < 3:
|
54 |
+
# no attention layers in down_blocks.3
|
55 |
+
hf_down_atn_prefix = f"down_blocks.{i}.attentions.{j}."
|
56 |
+
sd_down_atn_prefix = f"input_blocks.{3*i + j + 1}.1."
|
57 |
+
unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix))
|
58 |
+
|
59 |
+
for j in range(3):
|
60 |
+
# loop over resnets/attentions for upblocks
|
61 |
+
hf_up_res_prefix = f"up_blocks.{i}.resnets.{j}."
|
62 |
+
sd_up_res_prefix = f"output_blocks.{3*i + j}.0."
|
63 |
+
unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix))
|
64 |
+
|
65 |
+
if i > 0:
|
66 |
+
# no attention layers in up_blocks.0
|
67 |
+
hf_up_atn_prefix = f"up_blocks.{i}.attentions.{j}."
|
68 |
+
sd_up_atn_prefix = f"output_blocks.{3*i + j}.1."
|
69 |
+
unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix))
|
70 |
+
|
71 |
+
if i < 3:
|
72 |
+
# no downsample in down_blocks.3
|
73 |
+
hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0.conv."
|
74 |
+
sd_downsample_prefix = f"input_blocks.{3*(i+1)}.0.op."
|
75 |
+
unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix))
|
76 |
+
|
77 |
+
# no upsample in up_blocks.3
|
78 |
+
hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0."
|
79 |
+
sd_upsample_prefix = f"output_blocks.{3*i + 2}.{1 if i == 0 else 2}."
|
80 |
+
unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix))
|
81 |
+
|
82 |
+
hf_mid_atn_prefix = "mid_block.attentions.0."
|
83 |
+
sd_mid_atn_prefix = "middle_block.1."
|
84 |
+
unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix))
|
85 |
+
|
86 |
+
for j in range(2):
|
87 |
+
hf_mid_res_prefix = f"mid_block.resnets.{j}."
|
88 |
+
sd_mid_res_prefix = f"middle_block.{2*j}."
|
89 |
+
unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix))
|
90 |
+
|
91 |
+
|
92 |
+
def convert_unet_state_dict(unet_state_dict):
|
93 |
+
# buyer beware: this is a *brittle* function,
|
94 |
+
# and correct output requires that all of these pieces interact in
|
95 |
+
# the exact order in which I have arranged them.
|
96 |
+
mapping = {k: k for k in unet_state_dict.keys()}
|
97 |
+
for sd_name, hf_name in unet_conversion_map:
|
98 |
+
mapping[hf_name] = sd_name
|
99 |
+
for k, v in mapping.items():
|
100 |
+
if "resnets" in k:
|
101 |
+
for sd_part, hf_part in unet_conversion_map_resnet:
|
102 |
+
v = v.replace(hf_part, sd_part)
|
103 |
+
mapping[k] = v
|
104 |
+
for k, v in mapping.items():
|
105 |
+
for sd_part, hf_part in unet_conversion_map_layer:
|
106 |
+
v = v.replace(hf_part, sd_part)
|
107 |
+
mapping[k] = v
|
108 |
+
new_state_dict = {v: unet_state_dict[k] for k, v in mapping.items()}
|
109 |
+
return new_state_dict
|
110 |
+
|
111 |
+
|
112 |
+
# ================#
|
113 |
+
# VAE Conversion #
|
114 |
+
# ================#
|
115 |
+
|
116 |
+
vae_conversion_map = [
|
117 |
+
# (stable-diffusion, HF Diffusers)
|
118 |
+
("nin_shortcut", "conv_shortcut"),
|
119 |
+
("norm_out", "conv_norm_out"),
|
120 |
+
("mid.attn_1.", "mid_block.attentions.0."),
|
121 |
+
]
|
122 |
+
|
123 |
+
for i in range(4):
|
124 |
+
# down_blocks have two resnets
|
125 |
+
for j in range(2):
|
126 |
+
hf_down_prefix = f"encoder.down_blocks.{i}.resnets.{j}."
|
127 |
+
sd_down_prefix = f"encoder.down.{i}.block.{j}."
|
128 |
+
vae_conversion_map.append((sd_down_prefix, hf_down_prefix))
|
129 |
+
|
130 |
+
if i < 3:
|
131 |
+
hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0."
|
132 |
+
sd_downsample_prefix = f"down.{i}.downsample."
|
133 |
+
vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix))
|
134 |
+
|
135 |
+
hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0."
|
136 |
+
sd_upsample_prefix = f"up.{3-i}.upsample."
|
137 |
+
vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix))
|
138 |
+
|
139 |
+
# up_blocks have three resnets
|
140 |
+
# also, up blocks in hf are numbered in reverse from sd
|
141 |
+
for j in range(3):
|
142 |
+
hf_up_prefix = f"decoder.up_blocks.{i}.resnets.{j}."
|
143 |
+
sd_up_prefix = f"decoder.up.{3-i}.block.{j}."
|
144 |
+
vae_conversion_map.append((sd_up_prefix, hf_up_prefix))
|
145 |
+
|
146 |
+
# this part accounts for mid blocks in both the encoder and the decoder
|
147 |
+
for i in range(2):
|
148 |
+
hf_mid_res_prefix = f"mid_block.resnets.{i}."
|
149 |
+
sd_mid_res_prefix = f"mid.block_{i+1}."
|
150 |
+
vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix))
|
151 |
+
|
152 |
+
|
153 |
+
vae_conversion_map_attn = [
|
154 |
+
# (stable-diffusion, HF Diffusers)
|
155 |
+
("norm.", "group_norm."),
|
156 |
+
("q.", "query."),
|
157 |
+
("k.", "key."),
|
158 |
+
("v.", "value."),
|
159 |
+
("proj_out.", "proj_attn."),
|
160 |
+
]
|
161 |
+
|
162 |
+
|
163 |
+
def reshape_weight_for_sd(w):
|
164 |
+
# convert HF linear weights to SD conv2d weights
|
165 |
+
return w.reshape(*w.shape, 1, 1)
|
166 |
+
|
167 |
+
|
168 |
+
def convert_vae_state_dict(vae_state_dict):
|
169 |
+
mapping = {k: k for k in vae_state_dict.keys()}
|
170 |
+
for k, v in mapping.items():
|
171 |
+
for sd_part, hf_part in vae_conversion_map:
|
172 |
+
v = v.replace(hf_part, sd_part)
|
173 |
+
mapping[k] = v
|
174 |
+
for k, v in mapping.items():
|
175 |
+
if "attentions" in k:
|
176 |
+
for sd_part, hf_part in vae_conversion_map_attn:
|
177 |
+
v = v.replace(hf_part, sd_part)
|
178 |
+
mapping[k] = v
|
179 |
+
new_state_dict = {v: vae_state_dict[k] for k, v in mapping.items()}
|
180 |
+
weights_to_convert = ["q", "k", "v", "proj_out"]
|
181 |
+
for k, v in new_state_dict.items():
|
182 |
+
for weight_name in weights_to_convert:
|
183 |
+
if f"mid.attn_1.{weight_name}.weight" in k:
|
184 |
+
print(f"Reshaping {k} for SD format")
|
185 |
+
new_state_dict[k] = reshape_weight_for_sd(v)
|
186 |
+
return new_state_dict
|
187 |
+
|
188 |
+
|
189 |
+
# =========================#
|
190 |
+
# Text Encoder Conversion #
|
191 |
+
# =========================#
|
192 |
+
|
193 |
+
|
194 |
+
textenc_conversion_lst = [
|
195 |
+
# (stable-diffusion, HF Diffusers)
|
196 |
+
("resblocks.", "text_model.encoder.layers."),
|
197 |
+
("ln_1", "layer_norm1"),
|
198 |
+
("ln_2", "layer_norm2"),
|
199 |
+
(".c_fc.", ".fc1."),
|
200 |
+
(".c_proj.", ".fc2."),
|
201 |
+
(".attn", ".self_attn"),
|
202 |
+
("ln_final.", "transformer.text_model.final_layer_norm."),
|
203 |
+
("token_embedding.weight", "transformer.text_model.embeddings.token_embedding.weight"),
|
204 |
+
("positional_embedding", "transformer.text_model.embeddings.position_embedding.weight"),
|
205 |
+
]
|
206 |
+
protected = {re.escape(x[1]): x[0] for x in textenc_conversion_lst}
|
207 |
+
textenc_pattern = re.compile("|".join(protected.keys()))
|
208 |
+
|
209 |
+
# Ordering is from https://github.com/pytorch/pytorch/blob/master/test/cpp/api/modules.cpp
|
210 |
+
code2idx = {"q": 0, "k": 1, "v": 2}
|
211 |
+
|
212 |
+
|
213 |
+
def convert_text_enc_state_dict_v20(text_enc_dict):
|
214 |
+
new_state_dict = {}
|
215 |
+
capture_qkv_weight = {}
|
216 |
+
capture_qkv_bias = {}
|
217 |
+
for k, v in text_enc_dict.items():
|
218 |
+
if (
|
219 |
+
k.endswith(".self_attn.q_proj.weight")
|
220 |
+
or k.endswith(".self_attn.k_proj.weight")
|
221 |
+
or k.endswith(".self_attn.v_proj.weight")
|
222 |
+
):
|
223 |
+
k_pre = k[: -len(".q_proj.weight")]
|
224 |
+
k_code = k[-len("q_proj.weight")]
|
225 |
+
if k_pre not in capture_qkv_weight:
|
226 |
+
capture_qkv_weight[k_pre] = [None, None, None]
|
227 |
+
capture_qkv_weight[k_pre][code2idx[k_code]] = v
|
228 |
+
continue
|
229 |
+
|
230 |
+
if (
|
231 |
+
k.endswith(".self_attn.q_proj.bias")
|
232 |
+
or k.endswith(".self_attn.k_proj.bias")
|
233 |
+
or k.endswith(".self_attn.v_proj.bias")
|
234 |
+
):
|
235 |
+
k_pre = k[: -len(".q_proj.bias")]
|
236 |
+
k_code = k[-len("q_proj.bias")]
|
237 |
+
if k_pre not in capture_qkv_bias:
|
238 |
+
capture_qkv_bias[k_pre] = [None, None, None]
|
239 |
+
capture_qkv_bias[k_pre][code2idx[k_code]] = v
|
240 |
+
continue
|
241 |
+
|
242 |
+
relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k)
|
243 |
+
new_state_dict[relabelled_key] = v
|
244 |
+
|
245 |
+
for k_pre, tensors in capture_qkv_weight.items():
|
246 |
+
if None in tensors:
|
247 |
+
raise Exception("CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing")
|
248 |
+
relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k_pre)
|
249 |
+
new_state_dict[relabelled_key + ".in_proj_weight"] = torch.cat(tensors)
|
250 |
+
|
251 |
+
for k_pre, tensors in capture_qkv_bias.items():
|
252 |
+
if None in tensors:
|
253 |
+
raise Exception("CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing")
|
254 |
+
relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k_pre)
|
255 |
+
new_state_dict[relabelled_key + ".in_proj_bias"] = torch.cat(tensors)
|
256 |
+
|
257 |
+
return new_state_dict
|
258 |
+
|
259 |
+
|
260 |
+
def convert_text_enc_state_dict(text_enc_dict):
|
261 |
+
return text_enc_dict
|
262 |
+
|
263 |
+
|
264 |
+
if __name__ == "__main__":
|
265 |
+
parser = argparse.ArgumentParser()
|
266 |
+
|
267 |
+
parser.add_argument("--model_path", default=None, type=str, required=True, help="Path to the model to convert.")
|
268 |
+
parser.add_argument("--checkpoint_path", default=None, type=str, required=True, help="Path to the output model.")
|
269 |
+
parser.add_argument("--half", action="store_true", help="Save weights in half precision.")
|
270 |
+
parser.add_argument(
|
271 |
+
"--use_safetensors", action="store_true", help="Save weights use safetensors, default is ckpt."
|
272 |
+
)
|
273 |
+
|
274 |
+
args = parser.parse_args()
|
275 |
+
|
276 |
+
assert args.model_path is not None, "Must provide a model path!"
|
277 |
+
|
278 |
+
assert args.checkpoint_path is not None, "Must provide a checkpoint path!"
|
279 |
+
|
280 |
+
# Path for safetensors
|
281 |
+
unet_path = osp.join(args.model_path, "unet", "diffusion_pytorch_model.safetensors")
|
282 |
+
vae_path = osp.join(args.model_path, "vae", "diffusion_pytorch_model.safetensors")
|
283 |
+
text_enc_path = osp.join(args.model_path, "text_encoder", "model.safetensors")
|
284 |
+
|
285 |
+
# Load models from safetensors if it exists, if it doesn't pytorch
|
286 |
+
if osp.exists(unet_path):
|
287 |
+
unet_state_dict = load_file(unet_path, device="cpu")
|
288 |
+
else:
|
289 |
+
unet_path = osp.join(args.model_path, "unet", "diffusion_pytorch_model.bin")
|
290 |
+
unet_state_dict = torch.load(unet_path, map_location="cpu")
|
291 |
+
|
292 |
+
if osp.exists(vae_path):
|
293 |
+
vae_state_dict = load_file(vae_path, device="cpu")
|
294 |
+
else:
|
295 |
+
vae_path = osp.join(args.model_path, "vae", "diffusion_pytorch_model.bin")
|
296 |
+
vae_state_dict = torch.load(vae_path, map_location="cpu")
|
297 |
+
|
298 |
+
if osp.exists(text_enc_path):
|
299 |
+
text_enc_dict = load_file(text_enc_path, device="cpu")
|
300 |
+
else:
|
301 |
+
text_enc_path = osp.join(args.model_path, "text_encoder", "pytorch_model.bin")
|
302 |
+
text_enc_dict = torch.load(text_enc_path, map_location="cpu")
|
303 |
+
|
304 |
+
# Convert the UNet model
|
305 |
+
unet_state_dict = convert_unet_state_dict(unet_state_dict)
|
306 |
+
unet_state_dict = {"model.diffusion_model." + k: v for k, v in unet_state_dict.items()}
|
307 |
+
|
308 |
+
# Convert the VAE model
|
309 |
+
vae_state_dict = convert_vae_state_dict(vae_state_dict)
|
310 |
+
vae_state_dict = {"first_stage_model." + k: v for k, v in vae_state_dict.items()}
|
311 |
+
|
312 |
+
# Easiest way to identify v2.0 model seems to be that the text encoder (OpenCLIP) is deeper
|
313 |
+
is_v20_model = "text_model.encoder.layers.22.layer_norm2.bias" in text_enc_dict
|
314 |
+
|
315 |
+
if is_v20_model:
|
316 |
+
# Need to add the tag 'transformer' in advance so we can knock it out from the final layer-norm
|
317 |
+
text_enc_dict = {"transformer." + k: v for k, v in text_enc_dict.items()}
|
318 |
+
text_enc_dict = convert_text_enc_state_dict_v20(text_enc_dict)
|
319 |
+
text_enc_dict = {"cond_stage_model.model." + k: v for k, v in text_enc_dict.items()}
|
320 |
+
else:
|
321 |
+
text_enc_dict = convert_text_enc_state_dict(text_enc_dict)
|
322 |
+
text_enc_dict = {"cond_stage_model.transformer." + k: v for k, v in text_enc_dict.items()}
|
323 |
+
|
324 |
+
# Put together new checkpoint
|
325 |
+
state_dict = {**unet_state_dict, **vae_state_dict, **text_enc_dict}
|
326 |
+
if args.half:
|
327 |
+
state_dict = {k: v.half() for k, v in state_dict.items()}
|
328 |
+
|
329 |
+
if args.use_safetensors:
|
330 |
+
save_file(state_dict, args.checkpoint_path)
|
331 |
+
else:
|
332 |
+
state_dict = {"state_dict": state_dict}
|
333 |
+
torch.save(state_dict, args.checkpoint_path)
|
model_index.json
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
{
|
2 |
"_class_name": "StableDiffusionPipeline",
|
3 |
"_diffusers_version": "0.20.0.dev0",
|
4 |
-
"_name_or_path": "
|
5 |
"feature_extractor": [
|
6 |
"transformers",
|
7 |
"CLIPImageProcessor"
|
|
|
1 |
{
|
2 |
"_class_name": "StableDiffusionPipeline",
|
3 |
"_diffusers_version": "0.20.0.dev0",
|
4 |
+
"_name_or_path": "iamkaikai/amazing-logos-v4",
|
5 |
"feature_extractor": [
|
6 |
"transformers",
|
7 |
"CLIPImageProcessor"
|
safety_checker/config.json
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
{
|
2 |
-
"_name_or_path": "/root/.cache/huggingface/hub/models--
|
3 |
"architectures": [
|
4 |
"StableDiffusionSafetyChecker"
|
5 |
],
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "/root/.cache/huggingface/hub/models--iamkaikai--amazing-logos-v4/snapshots/3ccca4c043fff382aebc663f3672ed46d73efc1d/safety_checker",
|
3 |
"architectures": [
|
4 |
"StableDiffusionSafetyChecker"
|
5 |
],
|
text_encoder/config.json
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
{
|
2 |
-
"_name_or_path": "
|
3 |
"architectures": [
|
4 |
"CLIPTextModel"
|
5 |
],
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "iamkaikai/amazing-logos-v4",
|
3 |
"architectures": [
|
4 |
"CLIPTextModel"
|
5 |
],
|
unet/config.json
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
{
|
2 |
"_class_name": "UNet2DConditionModel",
|
3 |
"_diffusers_version": "0.20.0.dev0",
|
4 |
-
"_name_or_path": "/amazing-logos-v4/checkpoint-
|
5 |
"act_fn": "silu",
|
6 |
"addition_embed_type": null,
|
7 |
"addition_embed_type_num_heads": 64,
|
|
|
1 |
{
|
2 |
"_class_name": "UNet2DConditionModel",
|
3 |
"_diffusers_version": "0.20.0.dev0",
|
4 |
+
"_name_or_path": "/amazing-logos-v4/checkpoint-1200000",
|
5 |
"act_fn": "silu",
|
6 |
"addition_embed_type": null,
|
7 |
"addition_embed_type_num_heads": 64,
|
unet/diffusion_pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 3438375973
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dbbd608eafb09301904c8b94772552f8b92ee8df31aa1c26ef67034b89084198
|
3 |
size 3438375973
|
vae/config.json
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
{
|
2 |
"_class_name": "AutoencoderKL",
|
3 |
"_diffusers_version": "0.20.0.dev0",
|
4 |
-
"_name_or_path": "
|
5 |
"act_fn": "silu",
|
6 |
"block_out_channels": [
|
7 |
128,
|
|
|
1 |
{
|
2 |
"_class_name": "AutoencoderKL",
|
3 |
"_diffusers_version": "0.20.0.dev0",
|
4 |
+
"_name_or_path": "iamkaikai/amazing-logos-v4",
|
5 |
"act_fn": "silu",
|
6 |
"block_out_channels": [
|
7 |
128,
|
val_imgs_grid.png
CHANGED
Git LFS Details
|
Git LFS Details
|