File size: 6,317 Bytes
7bfd23a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import albumentations as A
import numpy as np
import torch
import torch.nn as nn

from transformers import PreTrainedModel
from timm import create_model
from typing import Mapping, Sequence, Tuple
from .configuration import MammoConfig


def _pad_to_aspect_ratio(img: np.ndarray, aspect_ratio: float) -> np.ndarray:
    """
    Pads to specified aspect ratio, only if current aspect ratio is
    greater.
    """
    h, w = img.shape[:2]
    if h / w > aspect_ratio:
        new_w = round(h / aspect_ratio)
        w_diff = new_w - w
        left_pad = w_diff // 2
        right_pad = w_diff - left_pad
        padding = ((0, 0), (left_pad, right_pad))
        if img.ndim == 3:
            padding = padding + ((0, 0),)
        img = np.pad(img, padding, mode="constant", constant_values=0)
    return img


def _to_torch_tensor(x: np.ndarray, device: str) -> torch.Tensor:
    if x.ndim == 2:
        x = torch.from_numpy(x).unsqueeze(0)
    elif x.ndim == 3:
        x = torch.from_numpy(x)
        if torch.tensor(x.size()).argmin().item() == 2:
            # channels last -> first
            x = x.permute(2, 0, 1)
    else:
        raise ValueError(f"Expected 2 or 3 dimensions, got {x.ndim}")
    return x.float().to(device)


class MammoModel(nn.Module):
    def __init__(
        self,
        backbone: str,
        image_size: Tuple[int, int],
        pad_to_aspect_ratio: bool,
        feature_dim: int = 1280,
        dropout: float = 0.1,
        num_classes: int = 5,
        in_chans: int = 1,
    ):
        super().__init__()
        self.backbone = create_model(
            model_name=backbone,
            pretrained=False,
            num_classes=0,
            global_pool="",
            features_only=False,
            in_chans=in_chans,
        )
        self.pooling = nn.AdaptiveAvgPool2d(1)
        self.dropout = nn.Dropout(p=dropout)
        self.linear = nn.Linear(feature_dim, num_classes)

        self.pad_to_aspect_ratio = pad_to_aspect_ratio
        self.aspect_ratio = image_size[0] / image_size[1]
        if self.pad_to_aspect_ratio:
            self.resize = A.Resize(image_size[0], image_size[1], p=1)
        else:
            self.resize = A.Compose(
                [
                    A.LongestMaxSize(image_size[0], p=1),
                    A.PadIfNeeded(image_size[0], image_size[1], p=1),
                ],
                p=1,
            )

    def normalize(self, x: torch.Tensor) -> torch.Tensor:
        # [0, 255] -> [-1, 1]
        mini, maxi = 0.0, 255.0
        x = (x - mini) / (maxi - mini)
        x = (x - 0.5) * 2.0
        return x

    def preprocess(
        self,
        x: Mapping[str, np.ndarray] | Sequence[Mapping[str, np.ndarray]],
        device: str,
    ) -> Sequence[Mapping[str, torch.Tensor]]:
        # x is a dict (or list of dicts) with keys "cc" and/or "mlo"
        # though the actual keys do not matter
        if not isinstance(x, Sequence):
            assert isinstance(x, Mapping)
            x = [x]
        if self.pad_to_aspect_ratio:
            x = [
                {
                    k: _pad_to_aspect_ratio(v.copy(), self.aspect_ratio)
                    for k, v in sample.items()
                }
                for sample in x
            ]
        x = [
            {
                k: _to_torch_tensor(self.resize(image=v)["image"], device=device)
                for k, v in sample.items()
            }
            for sample in x
        ]
        return x

    def forward(
        self, x: Sequence[Mapping[str, torch.Tensor]]
    ) -> Mapping[str, torch.Tensor]:
        batch_tensor = []
        batch_indices = []
        for idx, sample in enumerate(x):
            for k, v in sample.items():
                batch_tensor.append(v)
                batch_indices.append(idx)

        batch_tensor = torch.stack(batch_tensor, dim=0)
        batch_tensor = self.normalize(batch_tensor)
        features = self.pooling(self.backbone(batch_tensor))
        b, d = features.shape[:2]
        features = features.reshape(b, d)
        logits = self.linear(features)
        # cancer
        logits0 = logits[:, 0].sigmoid()
        # density
        logits1 = logits[:, 1:].softmax(dim=1)
        # mean over views
        batch_indices = torch.tensor(batch_indices)
        logits0 = torch.stack(
            [logits0[batch_indices == i].mean(dim=0) for i in batch_indices.unique()]
        )
        logits1 = torch.stack(
            [logits1[batch_indices == i].mean(dim=0) for i in batch_indices.unique()]
        )
        return {"cancer": logits0, "density": logits1}


class MammoEnsemble(PreTrainedModel):
    config_class = MammoConfig

    def __init__(self, config):
        super().__init__(config)
        self.num_models = config.num_models
        for i in range(self.num_models):
            setattr(
                self,
                f"net{i}",
                MammoModel(
                    config.backbone,
                    config.image_sizes[i],
                    config.pad_to_aspect_ratio[i],
                    config.feature_dim,
                    config.dropout,
                    config.num_classes,
                    config.in_chans,
                ),
            )

    @staticmethod
    def load_image_from_dicom(path: str) -> np.ndarray | None:
        try:
            from pydicom import dcmread
            from pydicom.pixels import apply_voi_lut
        except ModuleNotFoundError:
            print("`pydicom` is not installed, returning None ...")
            return None
        dicom = dcmread(path)
        arr = apply_voi_lut(dicom.pixel_array, dicom)
        if dicom.PhotometricInterpretation == "MONOCHROME1":
            arr = arr.max() - arr

        arr = arr - arr.min()
        arr = arr / arr.max()
        arr = (arr * 255).astype("uint8")
        return arr

    def forward(
        self,
        x: Mapping[str, np.ndarray] | Sequence[Mapping[str, np.ndarray]],
        device: str = "cpu",
    ) -> Mapping[str, torch.Tensor]:
        out = []
        for i in range(self.num_models):
            model = getattr(self, f"net{i}")
            x_pp = model.preprocess(x, device=device)
            out.append(model(x_pp))
        out = {k: torch.stack([o[k] for o in out]).mean(0) for k in out[0].keys()}
        return out