File size: 8,741 Bytes
ffc425e
4df251a
 
0161e1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ffc425e
 
4df251a
ffc425e
1504175
4df251a
dcfb65b
 
4df251a
ffc425e
f17faa2
 
 
dcfb65b
ffc425e
 
 
 
dcfb65b
 
 
 
 
 
 
 
 
 
 
 
 
 
ffc425e
 
 
5e2f54d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dcfb65b
5e2f54d
 
ffc425e
 
 
 
93dabf5
5e2f54d
 
 
0161e1f
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
---
language:
- en
license: other
library_name: transformers
model-index:
- name: alpaca-dragon-72b-v1
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 73.89
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ibivibiv/alpaca-dragon-72b-v1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 88.16
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ibivibiv/alpaca-dragon-72b-v1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 77.4
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ibivibiv/alpaca-dragon-72b-v1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 72.69
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ibivibiv/alpaca-dragon-72b-v1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 86.03
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ibivibiv/alpaca-dragon-72b-v1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 77.63
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ibivibiv/alpaca-dragon-72b-v1
      name: Open LLM Leaderboard
---

# Model Card for Alpaca Dragon 72B V1

Fine tune of [Smaug 72b v0.1](https://huggingface.co/abacusai/Smaug-72B-v0.1) using an alpaca data set I have handy.  The data is of planning and reasoning, which I use to help allow a model to break down a set of asks into a logical plan.  For some odd reason it bumps the mmlu and winogrande?  I would have expected the ARC to go up over those two, but this is often more of an artform than a science at times.  All thanks to [Abacus.AI](https://huggingface.co/abacusai) for sharing their work.

I used the same dataset in training one of my owl series [Strix Rufipes 70B](https://huggingface.co/ibivibiv/strix-rufipes-70b), which has worked well for planning out development tasks and other technical work.

![img](./alpaca_dragon.png)

# LICENSE
Note the license points back to SMAUG base license as it is a fine tune of their model only.  Respect and abide by their conditions.  Again, many thanks to Abacus for making their work open and use that as inspiration to keep your work open and respect their license agreements.
[License Link](https://github.com/QwenLM/Qwen/blob/main/Tongyi%20Qianwen%20LICENSE%20AGREEMENT)

## How to Get Started with the Model

Use the code below to get started with the model.

```
# Load model directly
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("ibivibiv/alpaca-dragon-72b-v1")
model = AutoModelForCausalLM.from_pretrained("ibivibiv/alpaca-dragon-72b-v1")

inputs = tokenizer("### Instruction: Create a plan for developing the game of snake in python using pygame.\n### Response:\n", return_tensors="pt", return_attention_mask=False)

outputs = model.generate(**inputs, max_length=200)
text = tokenizer.batch_decode(outputs)[0]
print(text)
```


## Evaluation

| Test Name                       | Accuracy (%) |
|---------------------------------|--------------|
| All                             | 77.31        |
| arc:challenge                   | 70.82        |
| hellaswag                       | 69.84        |
| hendrycksTest-abstract_algebra  | 42.00        |
| hendrycksTest-anatomy           | 71.85        |
| hendrycksTest-astronomy         | 86.84        |
| hendrycksTest-business_ethics   | 82.00        |
| hendrycksTest-clinical_knowledge| 84.53        |
| hendrycksTest-college_biology   | 93.06        |
| hendrycksTest-college_chemistry | 54.00        |
| hendrycksTest-college_computer_science | 65.00 |
| hendrycksTest-college_mathematics | 52.00      |
| hendrycksTest-college_medicine  | 75.14        |
| hendrycksTest-college_physics   | 55.88        |
| hendrycksTest-computer_security | 82.00        |
| hendrycksTest-conceptual_physics| 80.43        |
| hendrycksTest-econometrics      | 60.53        |
| hendrycksTest-electrical_engineering | 79.31   |
| hendrycksTest-elementary_mathematics | 70.37   |
| hendrycksTest-formal_logic      | 58.73        |
| hendrycksTest-global_facts      | 54.00        |
| hendrycksTest-high_school_biology | 88.39      |
| hendrycksTest-high_school_chemistry | 66.01    |
| hendrycksTest-high_school_computer_science | 82.00 |
| hendrycksTest-high_school_european_history | 84.24 |
| hendrycksTest-high_school_geography | 94.44    |
| hendrycksTest-high_school_government_and_politics | 98.96 |
| hendrycksTest-high_school_macroeconomics | 82.05  |
| hendrycksTest-high_school_mathematics | 45.93    |
| hendrycksTest-high_school_microeconomics | 86.13  |
| hendrycksTest-high_school_physics | 54.97      |
| hendrycksTest-high_school_psychology | 92.84    |
| hendrycksTest-high_school_statistics | 68.98    |
| hendrycksTest-high_school_us_history | 91.67    |
| hendrycksTest-high_school_world_history | 89.87  |
| hendrycksTest-human_aging       | 78.03        |
| hendrycksTest-human_sexuality   | 89.31        |
| hendrycksTest-international_law | 90.91        |
| hendrycksTest-jurisprudence     | 87.96        |
| hendrycksTest-logical_fallacies | 84.05        |
| hendrycksTest-machine_learning  | 58.93        |
| hendrycksTest-management        | 87.38        |
| hendrycksTest-marketing         | 95.30        |
| hendrycksTest-medical_genetics  | 86.00        |
| hendrycksTest-miscellaneous     | 92.21        |
| hendrycksTest-moral_disputes    | 83.53        |
| hendrycksTest-moral_scenarios   | 69.72        |
| hendrycksTest-nutrition         | 85.62        |
| hendrycksTest-philosophy        | 83.60        |
| hendrycksTest-prehistory        | 87.04        |
| hendrycksTest-professional_accounting | 65.96  |
| hendrycksTest-professional_law  | 60.69        |
| hendrycksTest-professional_medicine | 82.72    |
| hendrycksTest-professional_psychology | 81.86  |
| hendrycksTest-public_relations  | 75.45        |
| hendrycksTest-security_studies  | 82.04        |
| hendrycksTest-sociology         | 88.56        |
| hendrycksTest-us_foreign_policy | 94.00        |
| hendrycksTest-virology          | 57.23        |
| hendrycksTest-world_religions   | 89.47        |
| truthfulqa:mc                   | 72.6            |
| winogrande                      | 86.03        |
| gsm8k                           | 77.63        |


## Environmental Impact

- **Hardware Type:** [A100's..... more than I wanted to use since its all on my $$$]
- **Hours used:** [8]
- **Cloud Provider:** [runpod.io]
- **Compute Region:** [US]
- **Carbon Emitted:** [?]
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_ibivibiv__alpaca-dragon-72b-v1)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |79.30|
|AI2 Reasoning Challenge (25-Shot)|73.89|
|HellaSwag (10-Shot)              |88.16|
|MMLU (5-Shot)                    |77.40|
|TruthfulQA (0-shot)              |72.69|
|Winogrande (5-shot)              |86.03|
|GSM8k (5-shot)                   |77.63|