File size: 5,436 Bytes
ffc425e f17faa2 4df251a ffc425e 4df251a ffc425e 1504175 4df251a dcfb65b 4df251a ffc425e f17faa2 dcfb65b ffc425e dcfb65b ffc425e 5e2f54d dcfb65b 5e2f54d ffc425e 93dabf5 5e2f54d f17faa2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 |
---
library_name: transformers
license: other
language:
- en
---
# Model Card for Alpaca Dragon 72B V1
Fine tune of [Smaug 72b v0.1](https://huggingface.co/abacusai/Smaug-72B-v0.1) using an alpaca data set I have handy. The data is of planning and reasoning, which I use to help allow a model to break down a set of asks into a logical plan. For some odd reason it bumps the mmlu and winogrande? I would have expected the ARC to go up over those two, but this is often more of an artform than a science at times. All thanks to [Abacus.AI](https://huggingface.co/abacusai) for sharing their work.
I used the same dataset in training one of my owl series [Strix Rufipes 70B](https://huggingface.co/ibivibiv/strix-rufipes-70b), which has worked well for planning out development tasks and other technical work.
![img](./alpaca_dragon.png)
# LICENSE
Note the license points back to SMAUG base license as it is a fine tune of their model only. Respect and abide by their conditions. Again, many thanks to Abacus for making their work open and use that as inspiration to keep your work open and respect their license agreements.
[License Link](https://github.com/QwenLM/Qwen/blob/main/Tongyi%20Qianwen%20LICENSE%20AGREEMENT)
## How to Get Started with the Model
Use the code below to get started with the model.
```
# Load model directly
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("ibivibiv/alpaca-dragon-72b-v1")
model = AutoModelForCausalLM.from_pretrained("ibivibiv/alpaca-dragon-72b-v1")
inputs = tokenizer("### Instruction: Create a plan for developing the game of snake in python using pygame.\n### Response:\n", return_tensors="pt", return_attention_mask=False)
outputs = model.generate(**inputs, max_length=200)
text = tokenizer.batch_decode(outputs)[0]
print(text)
```
## Evaluation
| Test Name | Accuracy (%) |
|---------------------------------|--------------|
| All | 77.31 |
| arc:challenge | 70.82 |
| hellaswag | 69.84 |
| hendrycksTest-abstract_algebra | 42.00 |
| hendrycksTest-anatomy | 71.85 |
| hendrycksTest-astronomy | 86.84 |
| hendrycksTest-business_ethics | 82.00 |
| hendrycksTest-clinical_knowledge| 84.53 |
| hendrycksTest-college_biology | 93.06 |
| hendrycksTest-college_chemistry | 54.00 |
| hendrycksTest-college_computer_science | 65.00 |
| hendrycksTest-college_mathematics | 52.00 |
| hendrycksTest-college_medicine | 75.14 |
| hendrycksTest-college_physics | 55.88 |
| hendrycksTest-computer_security | 82.00 |
| hendrycksTest-conceptual_physics| 80.43 |
| hendrycksTest-econometrics | 60.53 |
| hendrycksTest-electrical_engineering | 79.31 |
| hendrycksTest-elementary_mathematics | 70.37 |
| hendrycksTest-formal_logic | 58.73 |
| hendrycksTest-global_facts | 54.00 |
| hendrycksTest-high_school_biology | 88.39 |
| hendrycksTest-high_school_chemistry | 66.01 |
| hendrycksTest-high_school_computer_science | 82.00 |
| hendrycksTest-high_school_european_history | 84.24 |
| hendrycksTest-high_school_geography | 94.44 |
| hendrycksTest-high_school_government_and_politics | 98.96 |
| hendrycksTest-high_school_macroeconomics | 82.05 |
| hendrycksTest-high_school_mathematics | 45.93 |
| hendrycksTest-high_school_microeconomics | 86.13 |
| hendrycksTest-high_school_physics | 54.97 |
| hendrycksTest-high_school_psychology | 92.84 |
| hendrycksTest-high_school_statistics | 68.98 |
| hendrycksTest-high_school_us_history | 91.67 |
| hendrycksTest-high_school_world_history | 89.87 |
| hendrycksTest-human_aging | 78.03 |
| hendrycksTest-human_sexuality | 89.31 |
| hendrycksTest-international_law | 90.91 |
| hendrycksTest-jurisprudence | 87.96 |
| hendrycksTest-logical_fallacies | 84.05 |
| hendrycksTest-machine_learning | 58.93 |
| hendrycksTest-management | 87.38 |
| hendrycksTest-marketing | 95.30 |
| hendrycksTest-medical_genetics | 86.00 |
| hendrycksTest-miscellaneous | 92.21 |
| hendrycksTest-moral_disputes | 83.53 |
| hendrycksTest-moral_scenarios | 69.72 |
| hendrycksTest-nutrition | 85.62 |
| hendrycksTest-philosophy | 83.60 |
| hendrycksTest-prehistory | 87.04 |
| hendrycksTest-professional_accounting | 65.96 |
| hendrycksTest-professional_law | 60.69 |
| hendrycksTest-professional_medicine | 82.72 |
| hendrycksTest-professional_psychology | 81.86 |
| hendrycksTest-public_relations | 75.45 |
| hendrycksTest-security_studies | 82.04 |
| hendrycksTest-sociology | 88.56 |
| hendrycksTest-us_foreign_policy | 94.00 |
| hendrycksTest-virology | 57.23 |
| hendrycksTest-world_religions | 89.47 |
| truthfulqa:mc | 72.6 |
| winogrande | 86.03 |
| gsm8k | 77.63 |
## Environmental Impact
- **Hardware Type:** [A100's..... more than I wanted to use since its all on my $$$]
- **Hours used:** [8]
- **Cloud Provider:** [runpod.io]
- **Compute Region:** [US]
- **Carbon Emitted:** [?] |