evaluation results
Browse files
README.md
CHANGED
@@ -58,27 +58,238 @@ output = tokenizer.batch_decode(output)
|
|
58 |
# print output
|
59 |
print(output)
|
60 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
**Model Architecture:**
|
63 |
Granite-3.1-1B-A400M-Base is based on a decoder-only sparse Mixture of Experts (MoE) transformer architecture. Core components of this architecture are: Fine-grained Experts, Dropless Token Routing, and Load Balancing Loss.
|
64 |
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
|
83 |
**Training Data:**
|
84 |
This model is trained on a mix of open source and proprietary data following a two-stage training strategy.
|
|
|
58 |
# print output
|
59 |
print(output)
|
60 |
```
|
61 |
+
**Evaluation Results:**
|
62 |
+
<table>
|
63 |
+
<caption><b>HuggingFace Open LLM Leaderboard V1</b></caption>
|
64 |
+
<thead>
|
65 |
+
<tr>
|
66 |
+
<th style="text-align:left; background-color: #001d6c; color: white;">Models</th>
|
67 |
+
<th style="text-align:center; background-color: #001d6c; color: white;">ARC-Challenge</th>
|
68 |
+
<th style="text-align:center; background-color: #001d6c; color: white;">Hellaswag</th>
|
69 |
+
<th style="text-align:center; background-color: #001d6c; color: white;">MMLU</th>
|
70 |
+
<th style="text-align:center; background-color: #001d6c; color: white;">TruthfulQA</th>
|
71 |
+
<th style="text-align:center; background-color: #001d6c; color: white;">Winogrande</th>
|
72 |
+
<th style="text-align:center; background-color: #001d6c; color: white;">GSM8K</th>
|
73 |
+
<th style="text-align:center; background-color: #001d6c; color: white;">Avg</th>
|
74 |
+
</tr></thead>
|
75 |
+
<tbody>
|
76 |
+
<tr>
|
77 |
+
<td style="text-align:left; background-color: #FFFFFF; color: black;">Granite-3.1-8B-Base</td>
|
78 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">63.99</td>
|
79 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">83.27</td>
|
80 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">63.45</td>
|
81 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">51.29</td>
|
82 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">78.92</td>
|
83 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">60.19</td>
|
84 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">66.85</td>
|
85 |
+
</tr>
|
86 |
+
<tr>
|
87 |
+
<td style="text-align:left; background-color: #FFFFFF; color: #2D2D2D;">Granite-3.1-2B-Base</td>
|
88 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">53.58</td>
|
89 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">77.67</td>
|
90 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">52.86</td>
|
91 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">39.02</td>
|
92 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">72.84</td>
|
93 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">47.99</td>
|
94 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">57.32</td>
|
95 |
+
</tr>
|
96 |
+
<tr>
|
97 |
+
<td style="text-align:left; background-color: #FFFFFF; color: #2D2D2D;">Granite-3.1-3B-A800M-Base</td>
|
98 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">50.76</td>
|
99 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">74.45</td>
|
100 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">48.31</td>
|
101 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">39.91</td>
|
102 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">69.29</td>
|
103 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">40.56</td>
|
104 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">53.88</td>
|
105 |
+
</tr>
|
106 |
+
<tr>
|
107 |
+
<td style="text-align:left; background-color: #DAE8FF; color: #2D2D2D;">Granite-3.1-1B-A400M-Base</td>
|
108 |
+
<td style="text-align:center; background-color: #DAE8FF; color: #2D2D2D;">39.42</td>
|
109 |
+
<td style="text-align:center; background-color: #DAE8FF; color: #2D2D2D;">66.13</td>
|
110 |
+
<td style="text-align:center; background-color: #DAE8FF; color: #2D2D2D;">26.53</td>
|
111 |
+
<td style="text-align:center; background-color: #DAE8FF; color: #2D2D2D;">37.67</td>
|
112 |
+
<td style="text-align:center; background-color: #DAE8FF; color: #2D2D2D;">2.03</td>
|
113 |
+
<td style="text-align:center; background-color: #DAE8FF; color: #2D2D2D;">18.87</td>
|
114 |
+
<td style="text-align:center; background-color: #DAE8FF; color: #2D2D2D;">31.78</td>
|
115 |
+
</tr>
|
116 |
+
</tbody></table>
|
117 |
+
|
118 |
+
<table>
|
119 |
+
<caption><b>HuggingFace Open LLM Leaderboard V2</b></caption>
|
120 |
+
<thead>
|
121 |
+
<tr>
|
122 |
+
<th style="text-align:left; background-color: #001d6c; color: white;">Models</th>
|
123 |
+
<th style="text-align:center; background-color: #001d6c; color: white;">IFEval</th>
|
124 |
+
<th style="text-align:center; background-color: #001d6c; color: white;">BBH</th>
|
125 |
+
<th style="text-align:center; background-color: #001d6c; color: white;">MATH Lvl 5</th>
|
126 |
+
<th style="text-align:center; background-color: #001d6c; color: white;">GPQA</th>
|
127 |
+
<th style="text-align:center; background-color: #001d6c; color: white;">MUSR</th>
|
128 |
+
<th style="text-align:center; background-color: #001d6c; color: white;">MMLU-Pro</th>
|
129 |
+
<th style="text-align:center; background-color: #001d6c; color: white;">Avg</th>
|
130 |
+
</tr></thead>
|
131 |
+
<tbody>
|
132 |
+
<tr>
|
133 |
+
<td style="text-align:left; background-color: #FFFFFF; color: black;">Granite-3.1-8B-Base</td>
|
134 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">42.21</td>
|
135 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">26.02</td>
|
136 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">9.52</td>
|
137 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">9.51</td>
|
138 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">8.36</td>
|
139 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">24.8</td>
|
140 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">20.07</td>
|
141 |
+
</tr>
|
142 |
+
<tr>
|
143 |
+
<td style="text-align:left; background-color: #FFFFFF; color: #2D2D2D;">Granite-3.1-2B-Base</td>
|
144 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">35.22</td>
|
145 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">16.84</td>
|
146 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">5.59</td>
|
147 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">3.69</td>
|
148 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">3.9</td>
|
149 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">13.9</td>
|
150 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">13.19</td>
|
151 |
+
</tr>
|
152 |
+
<tr>
|
153 |
+
<td style="text-align:left; background-color: #FFFFFF; color: #2D2D2D;">Granite-3.1-3B-A800M-Base</td>
|
154 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">29.96</td>
|
155 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">11.91</td>
|
156 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">4</td>
|
157 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">3.69</td>
|
158 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">1.11</td>
|
159 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">8.81</td>
|
160 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">9.91</td>
|
161 |
+
</tr>
|
162 |
+
<tr>
|
163 |
+
<td style="text-align:left; background-color: #DAE8FF; color: #2D2D2D;">Granite-3.1-1B-A400M-Base</td>
|
164 |
+
<td style="text-align:center; background-color: #DAE8FF; color: #2D2D2D;">25.19</td>
|
165 |
+
<td style="text-align:center; background-color: #DAE8FF; color: #2D2D2D;">6.43</td>
|
166 |
+
<td style="text-align:center; background-color: #DAE8FF; color: #2D2D2D;">2.19</td>
|
167 |
+
<td style="text-align:center; background-color: #DAE8FF; color: #2D2D2D;">0.22</td>
|
168 |
+
<td style="text-align:center; background-color: #DAE8FF; color: #2D2D2D;">1.76</td>
|
169 |
+
<td style="text-align:center; background-color: #DAE8FF; color: #2D2D2D;">1.55</td>
|
170 |
+
<td style="text-align:center; background-color: #DAE8FF; color: #2D2D2D;">6.22</td>
|
171 |
+
</tr>
|
172 |
+
</tbody></table>
|
173 |
|
174 |
**Model Architecture:**
|
175 |
Granite-3.1-1B-A400M-Base is based on a decoder-only sparse Mixture of Experts (MoE) transformer architecture. Core components of this architecture are: Fine-grained Experts, Dropless Token Routing, and Load Balancing Loss.
|
176 |
|
177 |
+
<table>
|
178 |
+
<thead>
|
179 |
+
<tr>
|
180 |
+
<th style="text-align:left; background-color: #001d6c; color: white;">Model</th>
|
181 |
+
<th style="text-align:center; background-color: #001d6c; color: white;">2B Dense</th>
|
182 |
+
<th style="text-align:center; background-color: #001d6c; color: white;">8B Dense</th>
|
183 |
+
<th style="text-align:center; background-color: #001d6c; color: white;">1B MoE</th>
|
184 |
+
<th style="text-align:center; background-color: #001d6c; color: white;">3B MoE</th>
|
185 |
+
</tr></thead>
|
186 |
+
<tbody>
|
187 |
+
<tr>
|
188 |
+
<td style="text-align:left; background-color: #FFFFFF; color: black;">Embedding size</td>
|
189 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">2048</td>
|
190 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">4096</td>
|
191 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">1024</td>
|
192 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">1536</td>
|
193 |
+
</tr>
|
194 |
+
<tr>
|
195 |
+
<td style="text-align:left; background-color: #FFFFFF; color: black;">Number of layers</td>
|
196 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">40</td>
|
197 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">40</td>
|
198 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">24</td>
|
199 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">32</td>
|
200 |
+
</tr>
|
201 |
+
<tr>
|
202 |
+
<td style="text-align:left; background-color: #FFFFFF; color: black;">Attention head size</td>
|
203 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">64</td>
|
204 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">128</td>
|
205 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">64</td>
|
206 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">64</td>
|
207 |
+
</tr>
|
208 |
+
<tr>
|
209 |
+
<td style="text-align:left; background-color: #FFFFFF; color: black;">Number of attention heads</td>
|
210 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">32</td>
|
211 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">32</td>
|
212 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">16</td>
|
213 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">24</td>
|
214 |
+
</tr>
|
215 |
+
<tr>
|
216 |
+
<td style="text-align:left; background-color: #FFFFFF; color: black;">Number of KV heads</td>
|
217 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">8</td>
|
218 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">8</td>
|
219 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">8</td>
|
220 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">8</td>
|
221 |
+
</tr>
|
222 |
+
<tr>
|
223 |
+
<td style="text-align:left; background-color: #FFFFFF; color: black;">MLP hidden size</td>
|
224 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">8192</td>
|
225 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">12800</td>
|
226 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">512</td>
|
227 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">512</td>
|
228 |
+
</tr>
|
229 |
+
<tr>
|
230 |
+
<td style="text-align:left; background-color: #FFFFFF; color: black;">MLP activation</td>
|
231 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">SwiGLU</td>
|
232 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">SwiGLU</td>
|
233 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">SwiGLU</td>
|
234 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">SwiGLU</td>
|
235 |
+
</tr>
|
236 |
+
<tr>
|
237 |
+
<td style="text-align:left; background-color: #FFFFFF; color: black;">Number of experts</td>
|
238 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">—</td>
|
239 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">—</td>
|
240 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">32</td>
|
241 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">40</td>
|
242 |
+
</tr>
|
243 |
+
<tr>
|
244 |
+
<td style="text-align:left; background-color: #FFFFFF; color: black;">MoE TopK</td>
|
245 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">—</td>
|
246 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">—</td>
|
247 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">8</td>
|
248 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">8</td>
|
249 |
+
</tr>
|
250 |
+
<tr>
|
251 |
+
<td style="text-align:left; background-color: #FFFFFF; color: black;">Initialization std</td>
|
252 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">0.1</td>
|
253 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">0.1</td>
|
254 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">0.1</td>
|
255 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">0.1</td>
|
256 |
+
</tr>
|
257 |
+
<tr>
|
258 |
+
<td style="text-align:left; background-color: #FFFFFF; color: black;">Sequence length</td>
|
259 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">128K</td>
|
260 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">128K</td>
|
261 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">128K</td>
|
262 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">128K</td>
|
263 |
+
</tr>
|
264 |
+
<tr>
|
265 |
+
<td style="text-align:left; background-color: #FFFFFF; color: black;">Position embedding</td>
|
266 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">RoPE</td>
|
267 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">RoPE</td>
|
268 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">RoPE</td>
|
269 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">RoPE</td>
|
270 |
+
</tr>
|
271 |
+
<tr>
|
272 |
+
<td style="text-align:left; background-color: #FFFFFF; color: black;"># Parameters</td>
|
273 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">2.5B</td>
|
274 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">8.1B</td>
|
275 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">1.3B</td>
|
276 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">3.3B</td>
|
277 |
+
</tr>
|
278 |
+
<tr>
|
279 |
+
<td style="text-align:left; background-color: #FFFFFF; color: black;"># Active parameters</td>
|
280 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">2.5B</td>
|
281 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">8.1B</td>
|
282 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">400M</td>
|
283 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">800M</td>
|
284 |
+
</tr>
|
285 |
+
<tr>
|
286 |
+
<td style="text-align:left; background-color: #FFFFFF; color: black;"># Training tokens</td>
|
287 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">12T</td>
|
288 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">12T</td>
|
289 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">10T</td>
|
290 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">10T</td>
|
291 |
+
</tr>
|
292 |
+
</tbody></table>
|
293 |
|
294 |
**Training Data:**
|
295 |
This model is trained on a mix of open source and proprietary data following a two-stage training strategy.
|