SagiPolaczek commited on
Commit
317d0a6
·
verified ·
1 Parent(s): cc63b5f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +6 -6
README.md CHANGED
@@ -8,11 +8,11 @@ tags:
8
  library_name: biomed
9
  license: apache-2.0
10
  base_model:
11
- - ibm/biomed.omics.bl.sm.ma-ted-400m
12
  ---
13
 
14
  Protein solubility is a critical factor in both pharmaceutical research and production processes, as it can significantly impact the quality and function of a protein.
15
- This is an example for finetuning `ibm/biomed.omics.bl.sm-ted-400m` for protein solubility prediction (binary classification) based solely on the amino acid sequence.
16
 
17
  The benchmark defined in: https://academic.oup.com/bioinformatics/article/34/15/2605/4938490
18
  Data retrieved from: https://zenodo.org/records/1162886
@@ -28,13 +28,13 @@ Data retrieved from: https://zenodo.org/records/1162886
28
 
29
  ## Usage
30
 
31
- Using `ibm/biomed.omics.bl.sm.ma-ted-400m` requires installing [https://github.com/BiomedSciAI/biomed-multi-alignment](https://github.com/TBD)
32
 
33
  ```
34
  pip install git+https://github.com/BiomedSciAI/biomed-multi-alignment.git
35
  ```
36
 
37
- A simple example for a task already supported by `ibm/biomed.omics.bl.sm.ma-ted-400m`:
38
  ```python
39
  import os
40
 
@@ -45,10 +45,10 @@ from mammal.keys import CLS_PRED, SCORES
45
  from mammal.model import Mammal
46
 
47
  # Load Model
48
- model = Mammal.from_pretrained("ibm/biomed.omics.bl.sm.ma-ted-400m.protein_solubility")
49
 
50
  # Load Tokenizer
51
- tokenizer_op = ModularTokenizerOp.from_pretrained("ibm/biomed.omics.bl.sm.ma-ted-400m.protein_solubility")
52
 
53
  # convert to MAMMAL style
54
  sample_dict = {"protein_seq": protein_seq}
 
8
  library_name: biomed
9
  license: apache-2.0
10
  base_model:
11
+ - ibm/biomed.omics.bl.sm.ma-ted-458m
12
  ---
13
 
14
  Protein solubility is a critical factor in both pharmaceutical research and production processes, as it can significantly impact the quality and function of a protein.
15
+ This is an example for finetuning `ibm/biomed.omics.bl.sm-ted-458m` for protein solubility prediction (binary classification) based solely on the amino acid sequence.
16
 
17
  The benchmark defined in: https://academic.oup.com/bioinformatics/article/34/15/2605/4938490
18
  Data retrieved from: https://zenodo.org/records/1162886
 
28
 
29
  ## Usage
30
 
31
+ Using `ibm/biomed.omics.bl.sm.ma-ted-458m` requires installing [https://github.com/BiomedSciAI/biomed-multi-alignment](https://github.com/TBD)
32
 
33
  ```
34
  pip install git+https://github.com/BiomedSciAI/biomed-multi-alignment.git
35
  ```
36
 
37
+ A simple example for a task already supported by `ibm/biomed.omics.bl.sm.ma-ted-458m`:
38
  ```python
39
  import os
40
 
 
45
  from mammal.model import Mammal
46
 
47
  # Load Model
48
+ model = Mammal.from_pretrained("ibm/biomed.omics.bl.sm.ma-ted-458m.protein_solubility")
49
 
50
  # Load Tokenizer
51
+ tokenizer_op = ModularTokenizerOp.from_pretrained("ibm/biomed.omics.bl.sm.ma-ted-458m.protein_solubility")
52
 
53
  # convert to MAMMAL style
54
  sample_dict = {"protein_seq": protein_seq}