|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" Molformer model configuration""" |
|
|
|
from collections import OrderedDict |
|
from typing import Mapping |
|
|
|
from transformers.configuration_utils import PretrainedConfig |
|
from transformers.onnx import OnnxConfig |
|
from transformers.utils import logging |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
MOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP = { |
|
"ibm/MoLFormer-XL-both-10pct": "https://huggingface.co/ibm/MoLFormer-XL-both-10pct/resolve/main/config.json", |
|
} |
|
|
|
|
|
class MolformerConfig(PretrainedConfig): |
|
r""" |
|
This is the configuration class to store the configuration of a [`MolformerModel`]. It is used to instantiate an |
|
Molformer model according to the specified arguments, defining the model architecture. Instantiating a |
|
configuration with the defaults will yield a similar configuration to that of the Molformer |
|
[ibm/MoLFormer-XL-both-10pct](https://huggingface.co/ibm/MoLFormer-XL-both-10pct) architecture. |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
|
|
Args: |
|
vocab_size (`int`, *optional*, defaults to 2362): |
|
Vocabulary size of the Molformer model. Defines the number of different tokens that can be represented by |
|
the `inputs_ids` passed when calling [`MolformerModel`] or [`TFMolformerModel`]. |
|
hidden_size (`int`, *optional*, defaults to 768): |
|
Dimension of the encoder layers and the pooler layer. |
|
num_hidden_layers (`int`, *optional*, defaults to 12): |
|
Number of hidden layers in the Transformer encoder. |
|
num_attention_heads (`int`, *optional*, defaults to 12): |
|
Number of attention heads for each attention layer in the Transformer encoder. |
|
intermediate_size (`int`, *optional*, defaults to 768): |
|
Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. |
|
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): |
|
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, |
|
`"relu"`, `"selu"` and `"gelu_new"` are supported. |
|
hidden_dropout_prob (`float`, *optional*, defaults to 0.1): |
|
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. |
|
embedding_dropout_prob (`float`, *optional*, defaults to 0.2): |
|
The dropout probability for the word embeddings. |
|
max_position_embeddings (`int`, *optional*, defaults to 202): |
|
The maximum sequence length that this model might ever be used with. Typically set this to something large |
|
just in case (e.g., 512 or 1024 or 1536). |
|
initializer_range (`float`, *optional*, defaults to 0.02): |
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. |
|
layer_norm_eps (`float`, *optional*, defaults to 1e-12): |
|
The epsilon used by the layer normalization layers. |
|
linear_attention_eps (`float`, *optional*, defaults to 1e-06): |
|
The epsilon used by the linear attention layers normalization step. |
|
num_random_features (`int`, *optional*, defaults to 32): |
|
Random feature map dimension used in linear attention. |
|
feature_map_kernel (`str` or `function`, *optional*, defaults to `"relu"`): |
|
The non-linear activation function (function or string) in the generalized random features. If string, |
|
`"gelu"`, `"relu"`, `"selu"`, and `"gelu_new"` ar supported. |
|
deterministic_eval (`bool`, *optional*, defaults to `False`): |
|
Whether the random features should only be redrawn when training or not. If `True` and `model.training` is |
|
`False`, linear attention random feature weights will be constant, i.e., deterministic. |
|
classifier_dropout_prob (`float`, *optional*): |
|
The dropout probability for the classification head. If `None`, use `hidden_dropout_prob`. |
|
classifier_skip_connection (`bool`, *optional*, defaults to `True`): |
|
Whether a skip connection should be made between the layers of the classification head or not. |
|
pad_token_id (`int`, *optional*, defaults to 2): |
|
The id of the _padding_ token. |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import MolformerModel, MolformerConfig |
|
|
|
>>> # Initializing a Molformer ibm/MoLFormer-XL-both-10pct style configuration |
|
>>> configuration = MolformerConfig() |
|
|
|
>>> # Initializing a model from the ibm/MoLFormer-XL-both-10pct style configuration |
|
>>> model = MolformerModel(configuration) |
|
|
|
>>> # Accessing the model configuration |
|
>>> configuration = model.config |
|
```""" |
|
model_type = "molformer" |
|
|
|
def __init__( |
|
self, |
|
vocab_size=2362, |
|
hidden_size=768, |
|
num_hidden_layers=12, |
|
num_attention_heads=12, |
|
intermediate_size=768, |
|
hidden_act="gelu", |
|
hidden_dropout_prob=0.1, |
|
embedding_dropout_prob=0.2, |
|
max_position_embeddings=202, |
|
initializer_range=0.02, |
|
layer_norm_eps=1e-12, |
|
linear_attention_eps=1e-6, |
|
num_random_features=32, |
|
feature_map_kernel="relu", |
|
deterministic_eval=False, |
|
classifier_dropout_prob=None, |
|
classifier_skip_connection=True, |
|
pad_token_id=2, |
|
**kwargs, |
|
): |
|
super().__init__(pad_token_id=pad_token_id, **kwargs) |
|
|
|
self.vocab_size = vocab_size |
|
self.hidden_size = hidden_size |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
self.hidden_act = hidden_act |
|
self.intermediate_size = intermediate_size |
|
self.hidden_dropout_prob = hidden_dropout_prob |
|
self.embedding_dropout_prob = embedding_dropout_prob |
|
self.max_position_embeddings = max_position_embeddings |
|
self.initializer_range = initializer_range |
|
self.layer_norm_eps = layer_norm_eps |
|
self.linear_attention_eps = linear_attention_eps |
|
self.num_random_features = num_random_features |
|
self.feature_map_kernel = feature_map_kernel |
|
self.deterministic_eval = deterministic_eval |
|
self.classifier_dropout_prob = classifier_dropout_prob |
|
self.classifier_skip_connection = classifier_skip_connection |
|
|
|
|
|
|
|
class MolformerOnnxConfig(OnnxConfig): |
|
@property |
|
def inputs(self) -> Mapping[str, Mapping[int, str]]: |
|
if self.task == "multiple-choice": |
|
dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"} |
|
else: |
|
dynamic_axis = {0: "batch", 1: "sequence"} |
|
return OrderedDict( |
|
[ |
|
("input_ids", dynamic_axis), |
|
("attention_mask", dynamic_axis), |
|
] |
|
) |
|
|