File size: 7,233 Bytes
2ffd008 dc9d328 2ffd008 4d3e3f6 2ffd008 a117c2f 893e5c7 3b6b00b 2ffd008 acf6ba2 6bfe093 c7be750 e884869 6bfe093 2ffd008 dc9d328 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 |
---
license: cc-by-nc-4.0
library_name: transformers
tags:
- mergekit
- merge
- alpaca
- mistral
- not-for-all-audiences
- nsfw
base_model:
- icefog72/IceCocoaRP-7b
- icefog72/IceSakeV8RP-7b
- icefog72/IceSakeV6RP-7b
- Ppoyaa/KunoichiVerse-7B
- crestf411/daybreak-kunoichi-2dpo-7b
model-index:
- name: IceSakeRP-7b
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 52.13
name: strict accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=icefog72/IceSakeRP-7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 31.65
name: normalized accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=icefog72/IceSakeRP-7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 5.82
name: exact match
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=icefog72/IceSakeRP-7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 4.7
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=icefog72/IceSakeRP-7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 10.23
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=icefog72/IceSakeRP-7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 24.13
name: accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=icefog72/IceSakeRP-7b
name: Open LLM Leaderboard
---
# IceSakeRP-7b (IceSakeV12)
![image/png](https://cdn-uploads.huggingface.co/production/uploads/63407b719dbfe0d48b2d763b/PtPya8KK3BeD56yt53asU.png)
This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).
The model should handle 25-32k context window size.
[ST Discord thread of model - feedback](https://discord.com/channels/1100685673633153084/1259898635194339389)
[Rules-lorebook and settings I'm using you can find here ('By model' folder)](https://huggingface.co/icefog72/GeneralInfoToStoreNotModel/tree/main)
[ko-fi To buy sweets for my cat :3](https://ko-fi.com/icefog72)
## Exl2 Quants
>- [4.2bpw-exl2](https://huggingface.co/icefog72/IceSakeRP-7b-4.2bpw-exl2)
>- [6.5bpw-exl2](https://huggingface.co/icefog72/IceSakeRP-7b-6.5bpw-exl2)
>- [8bpw-exl2](https://huggingface.co/icefog72/IceSakeRP-7b-8bpw-exl2)
## Thx mradermacher for GGUF
>- [GGUF](https://huggingface.co/mradermacher/IceSakeRP-7b-GGUF)
>- [i1-GGUF](https://huggingface.co/mradermacher/IceSakeRP-7b-i1-GGUF)
### Merge Method
This model was merged using the SLERP merge method.
### Models Merged
The following models were included in the merge:
All before last one (bfloat16)
* IceSakeV11_1
- IceCocoaRP-7b
- IceSakeV8RP-7b (base_model)
* IceSakeV11_2 (base_model)
- IceSakeV6RP-7b
- IceSakeV0RP-7b (base_model)
- IceCocoaRP-7b (base_model)
- IceKunoichiRP-7b
- KunoichiVerse-7B (base_model)
- daybreak-kunoichi-2dpo-7b
I recommend using the `huggingface-hub` Python library:
```shell
pip3 install huggingface-hub
```
To download the `main` branch to a folder called `IceSakeRP-7b`:
```shell
mkdir IceSakeRP-7b
huggingface-cli download icefog72/IceSakeRP-7b --local-dir IceSakeRP-7b --local-dir-use-symlinks False
```
<details>
<summary>More advanced huggingface-cli download usage</summary>
If you remove the `--local-dir-use-symlinks False` parameter, the files will instead be stored in the central Hugging Face cache directory (default location on Linux is: `~/.cache/huggingface`), and symlinks will be added to the specified `--local-dir`, pointing to their real location in the cache. This allows for interrupted downloads to be resumed, and allows you to quickly clone the repo to multiple places on disk without triggering a download again. The downside, and the reason why I don't list that as the default option, is that the files are then hidden away in a cache folder and it's harder to know where your disk space is being used, and to clear it up if/when you want to remove a download model.
The cache location can be changed with the `HF_HOME` environment variable, and/or the `--cache-dir` parameter to `huggingface-cli`.
For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli).
To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`:
```shell
pip3 install hf_transfer
```
And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
```shell
mkdir FOLDERNAME
HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download MODEL --local-dir FOLDERNAME --local-dir-use-symlinks False
```
Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command.
</details>
### Configuration
The following YAML configuration was used to produce this model:
```yaml
slices:
- sources:
- model: IceSakeV11_1
layer_range: [0, 32]
- model: IceSakeV11_2
layer_range: [0, 32]
merge_method: slerp
base_model: IceSakeV11_2
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5 # fallback for rest of tensors
dtype: float16
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_icefog72__IceSakeRP-7b)
| Metric |Value|
|-------------------|----:|
|Avg. |21.44|
|IFEval (0-Shot) |52.13|
|BBH (3-Shot) |31.65|
|MATH Lvl 5 (4-Shot)| 5.82|
|GPQA (0-shot) | 4.70|
|MuSR (0-shot) |10.23|
|MMLU-PRO (5-shot) |24.13|
|