File size: 5,495 Bytes
d3dbde4
 
 
 
 
302bde0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d3dbde4
eea2579
 
 
 
522c6d9
eea2579
c8de6ef
 
 
 
 
 
 
 
eea2579
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c8de6ef
 
302bde0
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
---
license: gemma
library_name: transformers
datasets:
- jondurbin/gutenberg-dpo-v0.1
model-index:
- name: gemma-2-Ifable-9B
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: IFEval (0-Shot)
      type: HuggingFaceH4/ifeval
      args:
        num_few_shot: 0
    metrics:
    - type: inst_level_strict_acc and prompt_level_strict_acc
      value: 29.84
      name: strict accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=ifable/gemma-2-Ifable-9B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BBH (3-Shot)
      type: BBH
      args:
        num_few_shot: 3
    metrics:
    - type: acc_norm
      value: 41.03
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=ifable/gemma-2-Ifable-9B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MATH Lvl 5 (4-Shot)
      type: hendrycks/competition_math
      args:
        num_few_shot: 4
    metrics:
    - type: exact_match
      value: 8.91
      name: exact match
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=ifable/gemma-2-Ifable-9B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GPQA (0-shot)
      type: Idavidrein/gpqa
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 12.19
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=ifable/gemma-2-Ifable-9B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MuSR (0-shot)
      type: TAUR-Lab/MuSR
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 8.52
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=ifable/gemma-2-Ifable-9B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU-PRO (5-shot)
      type: TIGER-Lab/MMLU-Pro
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 35.85
      name: accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=ifable/gemma-2-Ifable-9B
      name: Open LLM Leaderboard
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# ifable/gemma-2-Ifable-9B
This model ranked first on the Creative Writing Benchmark (https://eqbench.com/creative_writing.html) on September 10, 2024

## Training and evaluation data

- Gutenberg: https://huggingface.co/datasets/jondurbin/gutenberg-dpo-v0.1
- Carefully curated proprietary creative writing dataset

## Training procedure

Training method: SimPO (GitHub - princeton-nlp/SimPO: SimPO: Simple Preference Optimization with a Reference-Free Reward)

It achieves the following results on the evaluation set:
- Loss: 1.0163
- Rewards/chosen: -21.6822
- Rewards/rejected: -47.8754
- Rewards/accuracies: 0.9167
- Rewards/margins: 26.1931
- Logps/rejected: -4.7875
- Logps/chosen: -2.1682
- Logits/rejected: -17.0475
- Logits/chosen: -12.0041

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 8e-07
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1.0

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | Sft Loss |
|:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|:--------:|
| 1.4444        | 0.9807 | 35   | 1.0163          | -21.6822       | -47.8754         | 0.9167             | 26.1931         | -4.7875        | -2.1682      | -17.0475        | -12.0041      | 0.0184   |


### Framework versions

- Transformers 4.43.4
- Pytorch 2.3.0a0+ebedce2
- Datasets 2.20.0
- Tokenizers 0.19.1


We are looking for product manager and operations managers to build applications through our model, and also open for business cooperation, and also AI engineer to join us, contact with : [email protected]
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_ifable__gemma-2-Ifable-9B)

|      Metric       |Value|
|-------------------|----:|
|Avg.               |22.73|
|IFEval (0-Shot)    |29.84|
|BBH (3-Shot)       |41.03|
|MATH Lvl 5 (4-Shot)| 8.91|
|GPQA (0-shot)      |12.19|
|MuSR (0-shot)      | 8.52|
|MMLU-PRO (5-shot)  |35.85|