File size: 5,495 Bytes
d3dbde4 302bde0 d3dbde4 eea2579 522c6d9 eea2579 c8de6ef eea2579 c8de6ef 302bde0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
---
license: gemma
library_name: transformers
datasets:
- jondurbin/gutenberg-dpo-v0.1
model-index:
- name: gemma-2-Ifable-9B
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 29.84
name: strict accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=ifable/gemma-2-Ifable-9B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 41.03
name: normalized accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=ifable/gemma-2-Ifable-9B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 8.91
name: exact match
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=ifable/gemma-2-Ifable-9B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 12.19
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=ifable/gemma-2-Ifable-9B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 8.52
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=ifable/gemma-2-Ifable-9B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 35.85
name: accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=ifable/gemma-2-Ifable-9B
name: Open LLM Leaderboard
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# ifable/gemma-2-Ifable-9B
This model ranked first on the Creative Writing Benchmark (https://eqbench.com/creative_writing.html) on September 10, 2024
## Training and evaluation data
- Gutenberg: https://huggingface.co/datasets/jondurbin/gutenberg-dpo-v0.1
- Carefully curated proprietary creative writing dataset
## Training procedure
Training method: SimPO (GitHub - princeton-nlp/SimPO: SimPO: Simple Preference Optimization with a Reference-Free Reward)
It achieves the following results on the evaluation set:
- Loss: 1.0163
- Rewards/chosen: -21.6822
- Rewards/rejected: -47.8754
- Rewards/accuracies: 0.9167
- Rewards/margins: 26.1931
- Logps/rejected: -4.7875
- Logps/chosen: -2.1682
- Logits/rejected: -17.0475
- Logits/chosen: -12.0041
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 8e-07
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | Sft Loss |
|:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|:--------:|
| 1.4444 | 0.9807 | 35 | 1.0163 | -21.6822 | -47.8754 | 0.9167 | 26.1931 | -4.7875 | -2.1682 | -17.0475 | -12.0041 | 0.0184 |
### Framework versions
- Transformers 4.43.4
- Pytorch 2.3.0a0+ebedce2
- Datasets 2.20.0
- Tokenizers 0.19.1
We are looking for product manager and operations managers to build applications through our model, and also open for business cooperation, and also AI engineer to join us, contact with : [email protected]
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_ifable__gemma-2-Ifable-9B)
| Metric |Value|
|-------------------|----:|
|Avg. |22.73|
|IFEval (0-Shot) |29.84|
|BBH (3-Shot) |41.03|
|MATH Lvl 5 (4-Shot)| 8.91|
|GPQA (0-shot) |12.19|
|MuSR (0-shot) | 8.52|
|MMLU-PRO (5-shot) |35.85|
|