Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Pretrained ELECTRA Language Model for Korean (bw-electra-base-discriminator)
|
2 |
+
|
3 |
+
|
4 |
+
### Usage
|
5 |
+
|
6 |
+
## Load Model and Tokenizer
|
7 |
+
|
8 |
+
```python
|
9 |
+
from transformers import ElectraModel,TFElectraModel,ElectraTokenizer
|
10 |
+
# tensorflow
|
11 |
+
model = TFElectraModel.from_pretrained("ifuseok/bw-electra-base-discriminator")
|
12 |
+
# torch
|
13 |
+
#model = ElectraModel.from_pretrained("ifuseok/bw-electra-base-discriminator",from_tf=True)
|
14 |
+
tokenizer = ElectraTokenizer.from_pretrained("ifuseok/bw-electra-base-discriminator",do_lower)
|
15 |
+
```
|
16 |
+
|
17 |
+
## Tokenizer example
|
18 |
+
```python
|
19 |
+
from transformers import ElectraTokenizer
|
20 |
+
tokenizer = ElectraTokenizer.from_pretrained("ifuseok/bw-electra-base-discriminator")
|
21 |
+
tokenizer.tokenize("[CLS] Big Wave ELECTRA ๋ชจ๋ธ์ ๊ณต๊ฐํฉ๋๋ค. [SEP]")
|
22 |
+
```
|
23 |
+
|
24 |
+
## Example using ElectraForPreTraining(Torch)
|
25 |
+
```python
|
26 |
+
import torch
|
27 |
+
from transformers import ElectraForPreTraining, ElectraTokenizer
|
28 |
+
|
29 |
+
discriminator = ElectraForPreTraining.from_pretrained("ifuseok/bw-electra-base-discriminator",from_tf=True)
|
30 |
+
tokenizer = ElectraTokenizer.from_pretrained("ifuseok/bw-electra-base-discriminator",do_lower_case=False)
|
31 |
+
|
32 |
+
sentence = "์๋ฌด๊ฒ๋ ํ๊ธฐ๊ฐ ์ซ๋ค."
|
33 |
+
fake_sentence = "์๋ฌด๊ฒ๋ ํ๊ธฐ๊ฐ ์ข๋ค."
|
34 |
+
|
35 |
+
fake_tokens = tokenizer.tokenize(fake_sentence)
|
36 |
+
fake_inputs = tokenizer.encode(fake_sentence, return_tensors="pt")
|
37 |
+
|
38 |
+
discriminator_outputs = discriminator(fake_inputs)
|
39 |
+
predictions = torch.round((torch.sign(discriminator_outputs[0]) + 1) / 2)
|
40 |
+
|
41 |
+
print(list(zip(fake_tokens, predictions.tolist()[0][1:-1])))
|
42 |
+
```
|
43 |
+
|
44 |
+
## Example using ElectraForPreTraining(Tensorflow)
|
45 |
+
```python
|
46 |
+
import tensorflow as tf
|
47 |
+
from transformers import TFElectraForPreTraining, ElectraTokenizer
|
48 |
+
|
49 |
+
discriminator = TFElectraForPreTraining.from_pretrained("ifuseok/bw-electra-base-discriminator" )
|
50 |
+
tokenizer = ElectraTokenizer.from_pretrained("ifuseok/bw-electra-base-discriminator", use_auth_token=access_token
|
51 |
+
,do_lower_case=False)
|
52 |
+
|
53 |
+
sentence = "์๋ฌด๊ฒ๋ ํ๊ธฐ๊ฐ ์ซ๋ค."
|
54 |
+
fake_sentence = "์๋ฌด๊ฒ๋ ํ๊ธฐ๊ฐ ์ข๋ค."
|
55 |
+
|
56 |
+
fake_tokens = tokenizer.tokenize(fake_sentence)
|
57 |
+
fake_inputs = tokenizer.encode(fake_sentence, return_tensors="tf")
|
58 |
+
|
59 |
+
discriminator_outputs = discriminator(fake_inputs)
|
60 |
+
predictions = tf.round((tf.sign(discriminator_outputs[0]) + 1)/2).numpy()
|
61 |
+
|
62 |
+
print(list(zip(fake_tokens, predictions.tolist()[0][1:-1])))
|
63 |
+
|
64 |
+
```
|