Card update
Browse files
README.md
CHANGED
@@ -1,3 +1,79 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
---
|
4 |
+
|
5 |
+
# Model Card for Model ID
|
6 |
+
|
7 |
+
This model is a finetuning of other models based on mistralai/Mistral-7B-v0.1.
|
8 |
+
|
9 |
+
## Model Details
|
10 |
+
|
11 |
+
### Model Description
|
12 |
+
|
13 |
+
The model has been generated from the merging of the models [viethq188/LeoScorpius-7B-Chat-DPO](https://huggingface.co/viethq188/LeoScorpius-7B-Chat-DPO) and [GreenNode/GreenNodeLM-7B-v1olet](https://huggingface.co/GreenNode/GreenNodeLM-7B-v1olet) and a later finetuning with a Platypus dataset [garage-bAInd/Open-Platypus](https://huggingface.co/datasets/garage-bAInd/Open-Platypus).
|
14 |
+
|
15 |
+
- **Developed by:** Ignos
|
16 |
+
- **Model type:** Mistral
|
17 |
+
- **License:** Apache-2.0
|
18 |
+
|
19 |
+
## Uses
|
20 |
+
|
21 |
+
The model aims to have good overall comparative results on HuggingFace metrics, improving reasoning.
|
22 |
+
|
23 |
+
## Bias, Risks, and Limitations
|
24 |
+
|
25 |
+
The same bias, risks and limitations from base models.
|
26 |
+
|
27 |
+
## Training Details
|
28 |
+
|
29 |
+
### Training Data
|
30 |
+
|
31 |
+
- [garage-bAInd/Open-Platypus](https://huggingface.co/datasets/garage-bAInd/Open-Platypus)
|
32 |
+
|
33 |
+
### Training Procedure
|
34 |
+
|
35 |
+
- Training with QLoRA approach and merging with base model.
|
36 |
+
|
37 |
+
### Results
|
38 |
+
|
39 |
+
- Huggingface evaluation pending
|
40 |
+
|
41 |
+
#### Summary
|
42 |
+
|
43 |
+
## Technical Specifications
|
44 |
+
|
45 |
+
### Model Architecture and Objective
|
46 |
+
|
47 |
+
- Models based on Mistral Architecture
|
48 |
+
|
49 |
+
### Compute Infrastructure
|
50 |
+
|
51 |
+
- Training on RunPod
|
52 |
+
|
53 |
+
#### Hardware
|
54 |
+
|
55 |
+
- 4 x Nvidia RTX 4090
|
56 |
+
- 64 vCPU 503 GB RAM
|
57 |
+
|
58 |
+
#### Software
|
59 |
+
|
60 |
+
- Mergekit (main)
|
61 |
+
- Axolotl 0.3.0
|
62 |
+
|
63 |
+
## Training procedure
|
64 |
+
|
65 |
+
The following `bitsandbytes` quantization config was used during training:
|
66 |
+
- quant_method: bitsandbytes
|
67 |
+
- load_in_8bit: False
|
68 |
+
- load_in_4bit: True
|
69 |
+
- llm_int8_threshold: 6.0
|
70 |
+
- llm_int8_skip_modules: None
|
71 |
+
- llm_int8_enable_fp32_cpu_offload: False
|
72 |
+
- llm_int8_has_fp16_weight: False
|
73 |
+
- bnb_4bit_quant_type: nf4
|
74 |
+
- bnb_4bit_use_double_quant: True
|
75 |
+
- bnb_4bit_compute_dtype: bfloat16
|
76 |
+
|
77 |
+
### Framework versions
|
78 |
+
|
79 |
+
- PEFT 0.6.0
|