--- base_model: unsloth/mistral-7b-v0.3-bnb-4bit library_name: peft license: apache-2.0 tags: - unsloth - generated_from_trainer model-index: - name: Mistral-7B-v0.3_magiccoder_reverse results: [] --- # Mistral-7B-v0.3_magiccoder_reverse This model is a fine-tuned version of [unsloth/mistral-7b-v0.3-bnb-4bit](https://huggingface.co/unsloth/mistral-7b-v0.3-bnb-4bit) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 7.2545 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.02 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.6277 | 0.0262 | 4 | 2.6769 | | 9.6471 | 0.0523 | 8 | 9.0033 | | 10.5155 | 0.0785 | 12 | 8.9102 | | 8.2554 | 0.1047 | 16 | 8.4103 | | 7.9575 | 0.1308 | 20 | 7.8467 | | 7.7793 | 0.1570 | 24 | 7.7779 | | 7.8343 | 0.1832 | 28 | 7.8376 | | 7.7751 | 0.2093 | 32 | 7.7518 | | 7.7596 | 0.2355 | 36 | 7.8731 | | 7.8576 | 0.2617 | 40 | 7.7542 | | 7.8192 | 0.2878 | 44 | 7.6664 | | 7.6969 | 0.3140 | 48 | 7.6550 | | 7.6456 | 0.3401 | 52 | 7.6300 | | 7.5219 | 0.3663 | 56 | 7.5777 | | 7.5785 | 0.3925 | 60 | 7.5343 | | 7.5603 | 0.4186 | 64 | 7.5427 | | 7.6511 | 0.4448 | 68 | 7.4908 | | 7.5751 | 0.4710 | 72 | 7.4379 | | 7.5561 | 0.4971 | 76 | 7.5841 | | 7.4865 | 0.5233 | 80 | 7.5991 | | 7.4538 | 0.5495 | 84 | 7.4216 | | 7.4582 | 0.5756 | 88 | 7.3826 | | 7.5413 | 0.6018 | 92 | 7.3876 | | 7.4509 | 0.6280 | 96 | 7.3721 | | 7.4923 | 0.6541 | 100 | 7.4695 | | 7.365 | 0.6803 | 104 | 7.4247 | | 7.3943 | 0.7065 | 108 | 7.3939 | | 7.3449 | 0.7326 | 112 | 7.3569 | | 7.2922 | 0.7588 | 116 | 7.3034 | | 7.3824 | 0.7850 | 120 | 7.2675 | | 7.4081 | 0.8111 | 124 | 7.3202 | | 7.3249 | 0.8373 | 128 | 7.2621 | | 7.3576 | 0.8635 | 132 | 7.2639 | | 7.2845 | 0.8896 | 136 | 7.2773 | | 7.2098 | 0.9158 | 140 | 7.2565 | | 7.2525 | 0.9419 | 144 | 7.2417 | | 7.2333 | 0.9681 | 148 | 7.2520 | | 7.2556 | 0.9943 | 152 | 7.2545 | ### Framework versions - PEFT 0.12.0 - Transformers 4.44.0 - Pytorch 2.4.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1