--- base_model: unsloth/mistral-7b-v0.3-bnb-4bit library_name: peft license: apache-2.0 tags: - unsloth - generated_from_trainer model-index: - name: Mistral-7B-v0.3_pct_reverse results: [] --- # Mistral-7B-v0.3_pct_reverse This model is a fine-tuned version of [unsloth/mistral-7b-v0.3-bnb-4bit](https://huggingface.co/unsloth/mistral-7b-v0.3-bnb-4bit) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 6.8605 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.02 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.1177 | 0.0206 | 8 | 2.6702 | | 8.9887 | 0.0413 | 16 | 9.0083 | | 7.777 | 0.0619 | 24 | 7.6913 | | 7.6327 | 0.0825 | 32 | 7.6181 | | 7.6585 | 0.1032 | 40 | 7.6409 | | 7.6813 | 0.1238 | 48 | 7.5593 | | 7.6016 | 0.1444 | 56 | 7.5868 | | 7.5595 | 0.1651 | 64 | 7.5960 | | 7.7069 | 0.1857 | 72 | 7.5984 | | 7.6285 | 0.2063 | 80 | 7.4589 | | 7.5374 | 0.2270 | 88 | 7.4251 | | 7.4161 | 0.2476 | 96 | 7.3111 | | 7.3713 | 0.2682 | 104 | 7.2864 | | 7.2921 | 0.2888 | 112 | 7.2224 | | 7.2529 | 0.3095 | 120 | 7.1938 | | 7.3559 | 0.3301 | 128 | 7.1139 | | 7.1657 | 0.3507 | 136 | 7.0930 | | 7.066 | 0.3714 | 144 | 7.0315 | | 7.1481 | 0.3920 | 152 | 7.0332 | | 7.0394 | 0.4126 | 160 | 7.0583 | | 7.0685 | 0.4333 | 168 | 7.0682 | | 6.9791 | 0.4539 | 176 | 6.9472 | | 7.1428 | 0.4745 | 184 | 7.0126 | | 7.1661 | 0.4952 | 192 | 6.9513 | | 6.9757 | 0.5158 | 200 | 7.0717 | | 6.9685 | 0.5364 | 208 | 6.9399 | | 7.0811 | 0.5571 | 216 | 6.8879 | | 7.0126 | 0.5777 | 224 | 6.9264 | | 6.9712 | 0.5983 | 232 | 6.8394 | | 6.9533 | 0.6190 | 240 | 6.9073 | | 6.9744 | 0.6396 | 248 | 6.9239 | | 7.1531 | 0.6602 | 256 | 6.9109 | | 6.9527 | 0.6809 | 264 | 6.8941 | | 7.1027 | 0.7015 | 272 | 6.9498 | | 7.1718 | 0.7221 | 280 | 6.9495 | | 7.0877 | 0.7427 | 288 | 6.9761 | | 6.9879 | 0.7634 | 296 | 6.9905 | | 6.9813 | 0.7840 | 304 | 6.9238 | | 7.0798 | 0.8046 | 312 | 6.8707 | | 7.0531 | 0.8253 | 320 | 6.8658 | | 7.0518 | 0.8459 | 328 | 6.8576 | | 7.127 | 0.8665 | 336 | 6.9017 | | 6.9259 | 0.8872 | 344 | 6.8581 | | 6.9477 | 0.9078 | 352 | 6.8727 | | 7.0367 | 0.9284 | 360 | 6.8629 | | 6.9114 | 0.9491 | 368 | 6.8469 | | 7.0537 | 0.9697 | 376 | 6.8627 | | 6.9656 | 0.9903 | 384 | 6.8605 | ### Framework versions - PEFT 0.12.0 - Transformers 4.44.0 - Pytorch 2.4.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1