End of training
Browse files
README.md
ADDED
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
library_name: peft
|
4 |
+
tags:
|
5 |
+
- unsloth
|
6 |
+
- generated_from_trainer
|
7 |
+
base_model: unsloth/mistral-7b-v0.3-bnb-4bit
|
8 |
+
model-index:
|
9 |
+
- name: mistral_7b_v_Magiccoder_evol_10k_qlora_ortho
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# mistral_7b_v_Magiccoder_evol_10k_qlora_ortho
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [unsloth/mistral-7b-v0.3-bnb-4bit](https://huggingface.co/unsloth/mistral-7b-v0.3-bnb-4bit) on an unknown dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 1.1813
|
21 |
+
|
22 |
+
## Model description
|
23 |
+
|
24 |
+
More information needed
|
25 |
+
|
26 |
+
## Intended uses & limitations
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Training and evaluation data
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training procedure
|
35 |
+
|
36 |
+
### Training hyperparameters
|
37 |
+
|
38 |
+
The following hyperparameters were used during training:
|
39 |
+
- learning_rate: 0.0001
|
40 |
+
- train_batch_size: 8
|
41 |
+
- eval_batch_size: 8
|
42 |
+
- seed: 42
|
43 |
+
- gradient_accumulation_steps: 8
|
44 |
+
- total_train_batch_size: 64
|
45 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
46 |
+
- lr_scheduler_type: cosine
|
47 |
+
- lr_scheduler_warmup_steps: 0.02
|
48 |
+
- num_epochs: 1
|
49 |
+
|
50 |
+
### Training results
|
51 |
+
|
52 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
53 |
+
|:-------------:|:------:|:----:|:---------------:|
|
54 |
+
| 1.2034 | 0.0262 | 4 | 1.2458 |
|
55 |
+
| 1.1597 | 0.0523 | 8 | 1.2035 |
|
56 |
+
| 1.1977 | 0.0785 | 12 | 1.2045 |
|
57 |
+
| 1.1152 | 0.1047 | 16 | 1.2144 |
|
58 |
+
| 1.1623 | 0.1308 | 20 | 1.2207 |
|
59 |
+
| 1.0816 | 0.1570 | 24 | 1.1929 |
|
60 |
+
| 1.2421 | 0.1832 | 28 | 1.2018 |
|
61 |
+
| 1.1908 | 0.2093 | 32 | 1.2023 |
|
62 |
+
| 1.1187 | 0.2355 | 36 | 1.1926 |
|
63 |
+
| 1.2034 | 0.2617 | 40 | 1.1915 |
|
64 |
+
| 1.2092 | 0.2878 | 44 | 1.1850 |
|
65 |
+
| 1.1567 | 0.3140 | 48 | 1.2156 |
|
66 |
+
| 1.1722 | 0.3401 | 52 | 1.1912 |
|
67 |
+
| 1.162 | 0.3663 | 56 | 1.2044 |
|
68 |
+
| 1.1497 | 0.3925 | 60 | 1.1980 |
|
69 |
+
| 1.2205 | 0.4186 | 64 | 1.1945 |
|
70 |
+
| 1.0966 | 0.4448 | 68 | 1.1971 |
|
71 |
+
| 1.123 | 0.4710 | 72 | 1.1945 |
|
72 |
+
| 1.1222 | 0.4971 | 76 | 1.1951 |
|
73 |
+
| 1.2472 | 0.5233 | 80 | 1.2024 |
|
74 |
+
| 1.1078 | 0.5495 | 84 | 1.1941 |
|
75 |
+
| 1.1993 | 0.5756 | 88 | 1.2111 |
|
76 |
+
| 1.2313 | 0.6018 | 92 | 1.1870 |
|
77 |
+
| 1.2431 | 0.6280 | 96 | 1.2047 |
|
78 |
+
| 1.1563 | 0.6541 | 100 | 1.1774 |
|
79 |
+
| 1.169 | 0.6803 | 104 | 1.2005 |
|
80 |
+
| 1.1873 | 0.7065 | 108 | 1.1957 |
|
81 |
+
| 1.0478 | 0.7326 | 112 | 1.1760 |
|
82 |
+
| 1.1245 | 0.7588 | 116 | 1.1628 |
|
83 |
+
| 1.1261 | 0.7850 | 120 | 1.1827 |
|
84 |
+
| 1.1876 | 0.8111 | 124 | 1.1869 |
|
85 |
+
| 1.1743 | 0.8373 | 128 | 1.1761 |
|
86 |
+
| 1.1865 | 0.8635 | 132 | 1.1744 |
|
87 |
+
| 1.1202 | 0.8896 | 136 | 1.1768 |
|
88 |
+
| 1.2158 | 0.9158 | 140 | 1.1790 |
|
89 |
+
| 1.0798 | 0.9419 | 144 | 1.1802 |
|
90 |
+
| 1.0996 | 0.9681 | 148 | 1.1814 |
|
91 |
+
| 1.2424 | 0.9943 | 152 | 1.1813 |
|
92 |
+
|
93 |
+
|
94 |
+
### Framework versions
|
95 |
+
|
96 |
+
- PEFT 0.7.1
|
97 |
+
- Transformers 4.40.2
|
98 |
+
- Pytorch 2.3.0+cu121
|
99 |
+
- Datasets 2.19.1
|
100 |
+
- Tokenizers 0.19.1
|