File size: 827 Bytes
56daab4
 
 
 
 
 
 
27672e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
lat_mean=39.951853021309034
lat_std=0.0005336591548786815
lon_mean=-75.19122782343982
lon_std=0.0004335530163099028
---
license: mit
---


#ResNet GPS Prediction Model
This model predicts GPS coordinates (latitude and longitude) from input images using a custom ResNet-based architecture.

##How to Use
1. Download `resnet_gps_model.pth` and `config.json` from this repository.
2. Define the model architecture (as shown in the usage example below).
3. Load the model weights and configuration.

## Example Usage
```python
import torch
import json

# Load config
config = json.load(open("config.json", "r"))

# Define and load model
resnet = CustomResNetModel(model_name="microsoft/resnet-18", num_classes=config["num_classes"])
state_dict = torch.load("resnet_gps_model.pth")
resnet.load_state_dict(state_dict)
resnet.eval()