File size: 3,823 Bytes
6ff6c37
 
 
 
 
e5939f7
6ff6c37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0162bcf
 
 
 
 
 
76805b5
942ee5a
0162bcf
 
 
 
090afab
c4e0123
090afab
 
0162bcf
 
090afab
 
 
0162bcf
 
6ff6c37
 
 
c2349bd
6ff6c37
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import torch
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
from typing import List, Dict, Any
import requests
import nltk
from transformers import pipeline

# Download required NLTK models
nltk.download("averaged_perceptron_tagger")
nltk.download("averaged_perceptron_tagger_eng")

# Define your model name
NEL_MODEL = "nel-mgenre-multilingual"


def get_wikipedia_page_props(input_str: str):
    if ">>" not in input_str:
        page_name = input_str
        language = "en"
    else:
        try:
            page_name, language = input_str.split(">>")
            page_name = page_name.strip()
            language = language.strip()
        except:
            page_name = input_str
            language = "en"
    wikipedia_url = f"https://{language}.wikipedia.org/w/api.php"
    wikipedia_params = {
        "action": "query",
        "prop": "pageprops",
        "format": "json",
        "titles": page_name,
    }

    qid = "NIL"
    try:
        response = requests.get(wikipedia_url, params=wikipedia_params)
        response.raise_for_status()
        data = response.json()

        if "pages" in data["query"]:
            page_id = list(data["query"]["pages"].keys())[0]

            if "pageprops" in data["query"]["pages"][page_id]:
                page_props = data["query"]["pages"][page_id]["pageprops"]

                if "wikibase_item" in page_props:
                    return page_props["wikibase_item"], language
                else:
                    return qid, language
            else:
                return qid, language
        else:
            return qid, language
    except Exception as e:
        return qid, language


def get_wikipedia_title(qid, language="en"):
    url = f"https://www.wikidata.org/w/api.php"
    params = {
        "action": "wbgetentities",
        "format": "json",
        "ids": qid,
        "props": "sitelinks/urls",
        "sitefilter": f"{language}wiki",
    }

    response = requests.get(url, params=params)
    try:
        response.raise_for_status()
        data = response.json()
    except requests.exceptions.RequestException as e:
        return "NIL", "None"
    except ValueError as e:
        return "NIL", "None"

    try:
        title = data["entities"][qid]["sitelinks"][f"{language}wiki"]["title"]
        url = data["entities"][qid]["sitelinks"][f"{language}wiki"]["url"]
        return title, url
    except KeyError:
        return "NIL", "None"


class NelPipeline:
    def __init__(self, model_dir: str = "."):
        self.model_name = NEL_MODEL
        print(f"Loading {model_dir}")
        self.device = "cuda" if torch.cuda.is_available() else "cpu"
        self.tokenizer = AutoTokenizer.from_pretrained(model_dir)
        self.model = pipeline("generic-nel", model="impresso-project/nel-mgenre-multilingual", 
                        tokenizer=self.tokenizer, 
                        trust_remote_code=True,
                        device=self.device)

    def preprocess(self, text: str):
        
        linked_entity = self.model(text)

        return linked_entity

    def postprocess(self, outputs):
        linked_entity = outputs

        return linked_entity


class EndpointHandler:
    def __init__(self, path: str = None):
        # Initialize the NelPipeline with the specified model
        self.pipeline = NelPipeline("impresso-project/nel-mgenre-multilingual")

    def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
        # Process incoming data
        inputs = data.get("inputs", "")
        if not isinstance(inputs, str):
            raise ValueError("Input must be a string.")

        # Preprocess, forward, and postprocess
        preprocessed = self.pipeline.preprocess(inputs)
        results = self.pipeline.postprocess(preprocessed)

        return results