File size: 7,330 Bytes
6b2e0e1
5101b13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
from transformers.modeling_outputs import TokenClassifierOutput, SequenceClassifierOutput
import torch
import torch.nn as nn
from transformers import PreTrainedModel, AutoModel, AutoConfig, BertConfig
from torch.nn import CrossEntropyLoss
from typing import Optional, Tuple, Union
import logging, json, os


logger = logging.getLogger(__name__)


def get_info(label_map):
    num_token_labels_dict = {task: len(labels) for task, labels in label_map.items()}
    return num_token_labels_dict


class ModelForSequenceAndTokenClassification(PreTrainedModel):
    def __init__(self, config, num_sequence_labels, num_token_labels, do_classif=False):
        super().__init__(config)
        self.num_token_labels = num_token_labels
        self.num_sequence_labels = num_sequence_labels
        self.config = config
        self.do_classif = do_classif

        self.bert = AutoModel.from_config(config)
        classifier_dropout = (
            config.classifier_dropout
            if config.classifier_dropout is not None
            else config.hidden_dropout_prob
        )
        self.dropout = nn.Dropout(classifier_dropout)

        # For token classification
        self.token_classifier = nn.Linear(config.hidden_size, self.num_token_labels)

        if do_classif:
            # For the entire sequence classification
            self.sequence_classifier = nn.Linear(
                config.hidden_size, self.num_sequence_labels
            )

        # Initialize weights and apply final processing
        self.post_init()

    """
    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
    models.
    """

    config_class = AutoConfig
    _keys_to_ignore_on_load_missing = [r"position_ids"]

    def do_classif(self):
        return self.do_classif

    def _init_weights(self, module):
        """Initialize the weights"""
        if isinstance(module, nn.Linear):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()
        elif isinstance(module, nn.LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)

    def forward(
        self,
        input_ids: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        token_type_ids: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.Tensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
        token_labels: Optional[torch.Tensor] = None,
        sequence_labels: Optional[torch.Tensor] = None,
        offset_mapping: Optional[torch.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[
        Union[Tuple[torch.Tensor], SequenceClassifierOutput],
        Union[Tuple[torch.Tensor], TokenClassifierOutput],
    ]:
        r"""
        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
            config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
            `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
        """
        return_dict = (
            return_dict if return_dict is not None else self.config.use_return_dict
        )

        outputs = self.bert(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        # For token classification
        token_output = outputs[0]

        token_output = self.dropout(token_output)
        token_logits = self.token_classifier(token_output)

        if self.do_classif:
            # For the entire sequence classification
            pooled_output = outputs[1]

            pooled_output = self.dropout(pooled_output)
            sequence_logits = self.sequence_classifier(pooled_output)

        # Computing the loss as the average of both losses
        loss = None
        if token_labels is not None:
            loss_fct = CrossEntropyLoss()
            # import pdb;pdb.set_trace()
            loss_tokens = loss_fct(
                token_logits.view(-1, self.num_token_labels), token_labels.view(-1)
            )

            if self.do_classif:
                if self.config.problem_type == "regression":
                    loss_fct = MSELoss()
                    if self.num_sequence_labels == 1:
                        loss_sequence = loss_fct(
                            sequence_logits.squeeze(), sequence_labels.squeeze()
                        )
                    else:
                        loss_sequence = loss_fct(sequence_logits, sequence_labels)
                if self.config.problem_type == "single_label_classification":
                    loss_fct = CrossEntropyLoss()
                    loss_sequence = loss_fct(
                        sequence_logits.view(-1, self.num_sequence_labels),
                        sequence_labels.view(-1),
                    )
                elif self.config.problem_type == "multi_label_classification":
                    loss_fct = BCEWithLogitsLoss()
                    loss_sequence = loss_fct(sequence_logits, sequence_labels)

                loss = loss_tokens + loss_sequence
            else:
                loss = loss_tokens

        if not return_dict:
            if self.do_classif:
                output = (
                    sequence_logits,
                    token_logits,
                ) + outputs[2:]
                return ((loss,) + output) if loss is not None else output
            else:
                output = (token_logits,) + outputs[2:]
                return ((loss,) + output) if loss is not None else output

        if self.do_classif:
            return SequenceClassifierOutput(
                loss=loss,
                logits=sequence_logits,
                hidden_states=outputs.hidden_states,
                attentions=outputs.attentions,
            ), TokenClassifierOutput(
                loss=loss,
                logits=token_logits,
                hidden_states=outputs.hidden_states,
                attentions=outputs.attentions,
            )
        else:
            return TokenClassifierOutput(
                loss=loss,
                logits=token_logits,
                hidden_states=outputs.hidden_states,
                attentions=outputs.attentions,
            )