File size: 2,536 Bytes
4d5e5ab a67bcfc 4d5e5ab 1ce58c3 4d5e5ab c6757e5 4d5e5ab a67bcfc 4d5e5ab a67bcfc 4d5e5ab a67bcfc 4d5e5ab 6a7f393 241e89a 6a7f393 241e89a 6a7f393 4d5e5ab 1ce58c3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 |
---
license: apache-2.0
base_model: imvladikon/whisper-medium-he
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: whisper-medium-he
results: []
language:
- he
pipeline_tag: automatic-speech-recognition
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# whisper-medium-he[WIP]
This model is a fine-tuned version of [imvladikon/whisper-medium-he](https://huggingface.co/imvladikon/whisper-medium-he) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2061
- Wer: 13.4020
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 2
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 4000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.0983 | 0.1 | 1000 | 0.3072 | 16.4362 |
| 0.1219 | 0.2 | 2000 | 0.2923 | 15.6642 |
| 0.134 | 0.3 | 3000 | 0.2345 | 13.7450 |
| 0.2113 | 0.39 | 4000 | 0.2061 | 13.4020 |
### Inference
#### HF
```python
from transformers import pipeline
pipe = pipeline("automatic-speech-recognition", model="imvladikon/whisper-medium-he", device_map="auto") # requires `pip install accelerate`
print(recognize("sample.mp3"))
```
#### whisper.cpp
Prepared : https://huggingface.co/imvladikon/whisper-medium-he/blob/main/ggml-hebrew.bin
But if need to convert:
```bash
git clone https://github.com/openai/whisper
git clone https://github.com/ggerganov/whisper.cpp
git clone https://huggingface.co/imvladikon/whisper-medium-he
python3 ./whisper.cpp/models/convert-h5-to-ggml.py ./whisper-medium-he/ ./whisper .
```
Then possible to check (if produced model is `ggml-model.bin`):
```bash
cd whisper.cpp && ./main -m ../ggml-model.bin -f ../sample.wav
```
### Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0 |