""" Bailing MoE model configuration """ from transformers.configuration_utils import PretrainedConfig class BailingMoeConfig(PretrainedConfig): model_type = "bailing_moe" def __init__( self, vocab_size=30592, hidden_size=1024, intermediate_size=None, num_hidden_layers=24, num_attention_heads=16, num_key_value_heads=0, hidden_act="silu", use_qkv_bias=False, # bailing only use_bias=True, # bailing only rms_norm_eps=1e-05, norm_head=False, # bailing only tie_word_embeddings=False, # PretrainedConfig key, here change default value. embedding_dropout=0.1, attention_dropout=0.1, output_dropout=0.1, initializer_range=0.02, max_position_embeddings=16384, rope_theta=10000.0, use_cache=True, use_sliding_window=False, sliding_window=4096, max_window_layers=28, rope_scaling=None, pad_token_id=126081, num_experts=16, num_shared_experts=0, num_experts_per_tok=2, norm_topk_prob=True, moe_intermediate_size=None, first_k_dense_replace=0, head_dim=None, output_router_logits=False, **kwargs, ): self.num_hidden_layers = num_hidden_layers self.vocab_size = vocab_size self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_attention_heads = num_attention_heads self.num_key_value_heads = num_key_value_heads self.hidden_act = hidden_act self.use_qkv_bias = use_qkv_bias self.use_bias = use_bias self.norm_head = norm_head self.rms_norm_eps = rms_norm_eps self.embedding_dropout = embedding_dropout self.attention_dropout = attention_dropout self.output_dropout = output_dropout self.initializer_range = initializer_range self.max_position_embeddings = max_position_embeddings self.rope_theta = rope_theta self.use_cache = use_cache self.use_sliding_window = use_sliding_window self.sliding_window = sliding_window self.max_window_layers = max_window_layers self.head_dim = head_dim self.rope_scaling = rope_scaling # MoE configs self.num_experts = num_experts self.num_shared_experts = num_shared_experts self.num_experts_per_tok = num_experts_per_tok self.norm_topk_prob = norm_topk_prob self.moe_intermediate_size = moe_intermediate_size self.first_k_dense_replace = first_k_dense_replace self.output_router_logits = output_router_logits super().__init__(pad_token_id=pad_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs)