inetnuc commited on
Commit
7e38494
1 Parent(s): 2db9545

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +40 -15
README.md CHANGED
@@ -1,23 +1,48 @@
1
- ---
2
  base_model: unsloth/Meta-Llama-3.1-8B-bnb-4bit
3
  language:
4
- - en
 
5
  license: apache-2.0
6
  tags:
7
- - text-generation-inference
8
- - transformers
9
- - unsloth
10
- - llama
11
- - trl
12
- - sft
13
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14
 
15
- # Uploaded model
 
 
 
 
 
 
16
 
17
- - **Developed by:** inetnuc
18
- - **License:** apache-2.0
19
- - **Finetuned from model :** unsloth/Meta-Llama-3.1-8B-bnb-4bit
20
 
21
- This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
 
 
22
 
23
- [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
 
 
 
 
 
1
  base_model: unsloth/Meta-Llama-3.1-8B-bnb-4bit
2
  language:
3
+
4
+ en
5
  license: apache-2.0
6
  tags:
7
+ text-generation-inference
8
+ transformers
9
+ unsloth
10
+ llama
11
+ trl
12
+ sft
13
+
14
+ LLAMA-3.1 8B Chat Nuclear Model
15
+ Developed by: inetnuc
16
+ License: apache-2.0
17
+ Finetuned from model: unsloth/Meta-Llama-3.1-8B-bnb-4bit
18
+ This LLAMA-3.1 model was finetuned to enhance capabilities in text generation for nuclear-related topics. The training was accelerated using Unsloth and Huggingface's TRL library, achieving a 2x faster performance.
19
+
20
+ Finetuning Process
21
+ The model was finetuned using the Unsloth library, leveraging its efficient training capabilities. The process included the following steps:
22
+
23
+ Data Preparation: Loaded and preprocessed nuclear-related data.
24
+ Model Loading: Utilized unsloth/Meta-Llama-3.1-8B-bnb-4bit as the base model.
25
+ LoRA Patching: Applied LoRA (Low-Rank Adaptation) for efficient training.
26
+ Training: Finetuned the model using Hugging Face's TRL library with optimized hyperparameters.
27
+
28
 
29
+ Model Details
30
+ Base Model: unsloth/Meta-Llama-3.1-8B-bnb-4bit
31
+ Language: English (en)
32
+ License: Apache-2.0
33
+ Usage
34
+ Loading the Model
35
+ You can load the model and tokenizer using the following code snippet:
36
 
37
+ python
38
+ Kodu kopyala
39
+ from transformers import AutoModelForCausalLM, AutoTokenizer
40
 
41
+ # Load the tokenizer and model
42
+ tokenizer = AutoTokenizer.from_pretrained("inetnuc/llama-3-8b-chat-nuclear")
43
+ model = AutoModelForCausalLM.from_pretrained("inetnuc/llama-3-8b-chat-nuclear")
44
 
45
+ # Example of generating text
46
+ inputs = tokenizer("what is the iaea approach for cyber security?", return_tensors="pt")
47
+ outputs = model.generate(**inputs, max_new_tokens=128)
48
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))