File size: 1,992 Bytes
4dd69c6 0a417ee 4dd69c6 0a417ee 4dd69c6 0a417ee 4dd69c6 0a417ee 4dd69c6 0a417ee 4dd69c6 0a417ee 4dd69c6 0a417ee 4dd69c6 0a417ee 4dd69c6 0a417ee 4dd69c6 0a417ee 4dd69c6 0a417ee 4dd69c6 0a417ee 4dd69c6 0a417ee 4dd69c6 0a417ee 4dd69c6 0a417ee 4dd69c6 0a417ee 4dd69c6 0a417ee 4dd69c6 0a417ee 4dd69c6 0a417ee 4dd69c6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 |
---
base_model: unsloth/Meta-Llama-3.1-8B-bnb-4bit
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- gguf
---
# LLAMA-3.1 8B Chat Turkish Model
- **Developed by:** inetnuc
- **License:** apache-2.0
- **Finetuned from model:** unsloth/Meta-Llama-3.1-8B-bnb-4bit
This LLAMA-3.1 model was finetuned to enhance capabilities in text generation for nuclear-related topics. The training was accelerated using [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library, achieving a 2x faster performance.
## Finetuning Process
The model was finetuned using the Unsloth library, leveraging its efficient training capabilities. The process included the following steps:
1. **Data Preparation:** Loaded and preprocessed turkish-related data.
2. **Model Loading:** Utilized `unsloth/llama-3-8b-bnb-4bit` as the base model.
3. **LoRA Patching:** Applied LoRA (Low-Rank Adaptation) for efficient training.
4. **Training:** Finetuned the model using Hugging Face's TRL library with optimized hyperparameters.
## Model Details
- **Base Model:** `unsloth/llama-3.1-8b-bnb-4bit`
- **Language:** English (`en`)
- **License:** Apache-2.0
## Author
**MUSTAFA UMUT OZBEK**
**https://www.linkedin.com/in/mustafaumutozbek/**
**https://x.com/m_umut_ozbek**
## Usage
### Loading the Model
You can load the model and tokenizer using the following code snippet:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("inetnuc/TurkishLlama-3.1-8B-4bit-chat-nuclear-lora")
model = AutoModelForCausalLM.from_pretrained("inetnuc/TurkishLlama-3.1-8B-4bit-chat-nuclear-lora")
# Example of generating text
inputs = tokenizer("Türki̇ye'de nükleer enerji̇ yatirimlari artirilmali mi, ne düşünüyorsun?", return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=128)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|