File size: 40,457 Bytes
1e77d1e
06839f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e77d1e
06839f0
dc4ac7b
06839f0
56016c3
4a50bb1
 
 
 
 
dc4ac7b
4a50bb1
dc4ac7b
4a50bb1
dc4ac7b
 
4a50bb1
 
 
 
 
 
dc4ac7b
 
 
 
 
 
 
 
 
 
 
06839f0
 
 
 
 
 
 
 
 
 
 
 
 
 
dc4ac7b
 
 
06839f0
dc4ac7b
 
06839f0
 
dc4ac7b
 
 
 
 
 
 
 
 
06839f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc4ac7b
 
06839f0
 
dc4ac7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
06839f0
dc4ac7b
 
 
 
06839f0
dc4ac7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
06839f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc4ac7b
 
 
 
 
 
 
 
06839f0
 
 
 
 
 
 
dc4ac7b
06839f0
 
 
 
 
 
 
 
 
 
 
 
 
dc4ac7b
 
06839f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc4ac7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
06839f0
 
 
 
 
 
 
 
 
 
dc4ac7b
06839f0
 
 
 
dc4ac7b
06839f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc4ac7b
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
---
tags:
- mteb
model-index:
- name: stella-large-zh
  results:
  - task:
      type: STS
    dataset:
      type: C-MTEB/AFQMC
      name: MTEB AFQMC
      config: default
      split: validation
      revision: None
    metrics:
    - type: cos_sim_pearson
      value: 51.61327712288466
    - type: cos_sim_spearman
      value: 54.48753880097122
    - type: euclidean_pearson
      value: 52.68387289931342
    - type: euclidean_spearman
      value: 54.48753879487172
    - type: manhattan_pearson
      value: 52.635406372350026
    - type: manhattan_spearman
      value: 54.447390526317044
  - task:
      type: STS
    dataset:
      type: C-MTEB/ATEC
      name: MTEB ATEC
      config: default
      split: test
      revision: None
    metrics:
    - type: cos_sim_pearson
      value: 53.39178036427897
    - type: cos_sim_spearman
      value: 54.450028472876134
    - type: euclidean_pearson
      value: 56.87300033777842
    - type: euclidean_spearman
      value: 54.45002622056799
    - type: manhattan_pearson
      value: 56.84326996138951
    - type: manhattan_spearman
      value: 54.433880144849375
  - task:
      type: Classification
    dataset:
      type: mteb/amazon_reviews_multi
      name: MTEB AmazonReviewsClassification (zh)
      config: zh
      split: test
      revision: 1399c76144fd37290681b995c656ef9b2e06e26d
    metrics:
    - type: accuracy
      value: 40.574000000000005
    - type: f1
      value: 38.87775700245793
  - task:
      type: STS
    dataset:
      type: C-MTEB/BQ
      name: MTEB BQ
      config: default
      split: test
      revision: None
    metrics:
    - type: cos_sim_pearson
      value: 60.80957921870066
    - type: cos_sim_spearman
      value: 62.37707350882237
    - type: euclidean_pearson
      value: 61.29032932843765
    - type: euclidean_spearman
      value: 62.37707350713817
    - type: manhattan_pearson
      value: 61.23028102541801
    - type: manhattan_spearman
      value: 62.31280056582247
  - task:
      type: Clustering
    dataset:
      type: C-MTEB/CLSClusteringP2P
      name: MTEB CLSClusteringP2P
      config: default
      split: test
      revision: None
    metrics:
    - type: v_measure
      value: 40.27066616318565
  - task:
      type: Clustering
    dataset:
      type: C-MTEB/CLSClusteringS2S
      name: MTEB CLSClusteringS2S
      config: default
      split: test
      revision: None
    metrics:
    - type: v_measure
      value: 37.503323644484716
  - task:
      type: Reranking
    dataset:
      type: C-MTEB/CMedQAv1-reranking
      name: MTEB CMedQAv1
      config: default
      split: test
      revision: None
    metrics:
    - type: map
      value: 84.69295191328456
    - type: mrr
      value: 87.08992063492063
  - task:
      type: Reranking
    dataset:
      type: C-MTEB/CMedQAv2-reranking
      name: MTEB CMedQAv2
      config: default
      split: test
      revision: None
    metrics:
    - type: map
      value: 85.22650690364465
    - type: mrr
      value: 87.72158730158729
  - task:
      type: Retrieval
    dataset:
      type: C-MTEB/CmedqaRetrieval
      name: MTEB CmedqaRetrieval
      config: default
      split: dev
      revision: None
    metrics:
    - type: map_at_1
      value: 23.54
    - type: map_at_10
      value: 35.591
    - type: map_at_100
      value: 37.549
    - type: map_at_1000
      value: 37.663000000000004
    - type: map_at_3
      value: 31.405
    - type: map_at_5
      value: 33.792
    - type: mrr_at_1
      value: 36.359
    - type: mrr_at_10
      value: 44.624
    - type: mrr_at_100
      value: 45.660000000000004
    - type: mrr_at_1000
      value: 45.707
    - type: mrr_at_3
      value: 42.002
    - type: mrr_at_5
      value: 43.535000000000004
    - type: ndcg_at_1
      value: 36.359
    - type: ndcg_at_10
      value: 42.28
    - type: ndcg_at_100
      value: 49.997
    - type: ndcg_at_1000
      value: 51.966
    - type: ndcg_at_3
      value: 36.851
    - type: ndcg_at_5
      value: 39.249
    - type: precision_at_1
      value: 36.359
    - type: precision_at_10
      value: 9.542
    - type: precision_at_100
      value: 1.582
    - type: precision_at_1000
      value: 0.183
    - type: precision_at_3
      value: 20.913999999999998
    - type: precision_at_5
      value: 15.404000000000002
    - type: recall_at_1
      value: 23.54
    - type: recall_at_10
      value: 53.005
    - type: recall_at_100
      value: 85.085
    - type: recall_at_1000
      value: 98.21
    - type: recall_at_3
      value: 36.944
    - type: recall_at_5
      value: 44.137
  - task:
      type: PairClassification
    dataset:
      type: C-MTEB/CMNLI
      name: MTEB Cmnli
      config: default
      split: validation
      revision: None
    metrics:
    - type: cos_sim_accuracy
      value: 76.16355983162958
    - type: cos_sim_ap
      value: 85.14228023901842
    - type: cos_sim_f1
      value: 77.86752827140549
    - type: cos_sim_precision
      value: 72.18450479233228
    - type: cos_sim_recall
      value: 84.5218611176058
    - type: dot_accuracy
      value: 76.16355983162958
    - type: dot_ap
      value: 85.16266644596179
    - type: dot_f1
      value: 77.86752827140549
    - type: dot_precision
      value: 72.18450479233228
    - type: dot_recall
      value: 84.5218611176058
    - type: euclidean_accuracy
      value: 76.16355983162958
    - type: euclidean_ap
      value: 85.14227717790371
    - type: euclidean_f1
      value: 77.86752827140549
    - type: euclidean_precision
      value: 72.18450479233228
    - type: euclidean_recall
      value: 84.5218611176058
    - type: manhattan_accuracy
      value: 75.99518941671678
    - type: manhattan_ap
      value: 85.10764940972825
    - type: manhattan_f1
      value: 77.80804694048618
    - type: manhattan_precision
      value: 70.49553825707233
    - type: manhattan_recall
      value: 86.81318681318682
    - type: max_accuracy
      value: 76.16355983162958
    - type: max_ap
      value: 85.16266644596179
    - type: max_f1
      value: 77.86752827140549
  - task:
      type: Retrieval
    dataset:
      type: C-MTEB/CovidRetrieval
      name: MTEB CovidRetrieval
      config: default
      split: dev
      revision: None
    metrics:
    - type: map_at_1
      value: 73.762
    - type: map_at_10
      value: 81.76299999999999
    - type: map_at_100
      value: 81.974
    - type: map_at_1000
      value: 81.977
    - type: map_at_3
      value: 80.23400000000001
    - type: map_at_5
      value: 81.189
    - type: mrr_at_1
      value: 74.18299999999999
    - type: mrr_at_10
      value: 81.792
    - type: mrr_at_100
      value: 81.994
    - type: mrr_at_1000
      value: 81.997
    - type: mrr_at_3
      value: 80.277
    - type: mrr_at_5
      value: 81.221
    - type: ndcg_at_1
      value: 74.078
    - type: ndcg_at_10
      value: 85.195
    - type: ndcg_at_100
      value: 86.041
    - type: ndcg_at_1000
      value: 86.111
    - type: ndcg_at_3
      value: 82.171
    - type: ndcg_at_5
      value: 83.90100000000001
    - type: precision_at_1
      value: 74.078
    - type: precision_at_10
      value: 9.684
    - type: precision_at_100
      value: 1.004
    - type: precision_at_1000
      value: 0.101
    - type: precision_at_3
      value: 29.470000000000002
    - type: precision_at_5
      value: 18.567
    - type: recall_at_1
      value: 73.762
    - type: recall_at_10
      value: 95.785
    - type: recall_at_100
      value: 99.368
    - type: recall_at_1000
      value: 99.895
    - type: recall_at_3
      value: 87.724
    - type: recall_at_5
      value: 91.93900000000001
  - task:
      type: Retrieval
    dataset:
      type: C-MTEB/DuRetrieval
      name: MTEB DuRetrieval
      config: default
      split: dev
      revision: None
    metrics:
    - type: map_at_1
      value: 25.911
    - type: map_at_10
      value: 80.656
    - type: map_at_100
      value: 83.446
    - type: map_at_1000
      value: 83.485
    - type: map_at_3
      value: 55.998000000000005
    - type: map_at_5
      value: 70.577
    - type: mrr_at_1
      value: 90.14999999999999
    - type: mrr_at_10
      value: 93.35900000000001
    - type: mrr_at_100
      value: 93.419
    - type: mrr_at_1000
      value: 93.423
    - type: mrr_at_3
      value: 93.133
    - type: mrr_at_5
      value: 93.26100000000001
    - type: ndcg_at_1
      value: 90.14999999999999
    - type: ndcg_at_10
      value: 87.806
    - type: ndcg_at_100
      value: 90.4
    - type: ndcg_at_1000
      value: 90.776
    - type: ndcg_at_3
      value: 86.866
    - type: ndcg_at_5
      value: 85.619
    - type: precision_at_1
      value: 90.14999999999999
    - type: precision_at_10
      value: 42.045
    - type: precision_at_100
      value: 4.814
    - type: precision_at_1000
      value: 0.49
    - type: precision_at_3
      value: 78.0
    - type: precision_at_5
      value: 65.62
    - type: recall_at_1
      value: 25.911
    - type: recall_at_10
      value: 88.942
    - type: recall_at_100
      value: 97.56700000000001
    - type: recall_at_1000
      value: 99.62
    - type: recall_at_3
      value: 58.361
    - type: recall_at_5
      value: 75.126
  - task:
      type: Retrieval
    dataset:
      type: C-MTEB/EcomRetrieval
      name: MTEB EcomRetrieval
      config: default
      split: dev
      revision: None
    metrics:
    - type: map_at_1
      value: 46.2
    - type: map_at_10
      value: 56.309
    - type: map_at_100
      value: 56.977
    - type: map_at_1000
      value: 56.995
    - type: map_at_3
      value: 53.55
    - type: map_at_5
      value: 55.19
    - type: mrr_at_1
      value: 46.2
    - type: mrr_at_10
      value: 56.309
    - type: mrr_at_100
      value: 56.977
    - type: mrr_at_1000
      value: 56.995
    - type: mrr_at_3
      value: 53.55
    - type: mrr_at_5
      value: 55.19
    - type: ndcg_at_1
      value: 46.2
    - type: ndcg_at_10
      value: 61.656
    - type: ndcg_at_100
      value: 64.714
    - type: ndcg_at_1000
      value: 65.217
    - type: ndcg_at_3
      value: 56.022000000000006
    - type: ndcg_at_5
      value: 58.962
    - type: precision_at_1
      value: 46.2
    - type: precision_at_10
      value: 7.86
    - type: precision_at_100
      value: 0.9249999999999999
    - type: precision_at_1000
      value: 0.097
    - type: precision_at_3
      value: 21.067
    - type: precision_at_5
      value: 14.06
    - type: recall_at_1
      value: 46.2
    - type: recall_at_10
      value: 78.60000000000001
    - type: recall_at_100
      value: 92.5
    - type: recall_at_1000
      value: 96.5
    - type: recall_at_3
      value: 63.2
    - type: recall_at_5
      value: 70.3
  - task:
      type: Classification
    dataset:
      type: C-MTEB/IFlyTek-classification
      name: MTEB IFlyTek
      config: default
      split: validation
      revision: None
    metrics:
    - type: accuracy
      value: 47.03347441323585
    - type: f1
      value: 35.50895794566714
  - task:
      type: Classification
    dataset:
      type: C-MTEB/JDReview-classification
      name: MTEB JDReview
      config: default
      split: test
      revision: None
    metrics:
    - type: accuracy
      value: 86.73545966228893
    - type: ap
      value: 55.43694740493539
    - type: f1
      value: 81.47218440859787
  - task:
      type: STS
    dataset:
      type: C-MTEB/LCQMC
      name: MTEB LCQMC
      config: default
      split: test
      revision: None
    metrics:
    - type: cos_sim_pearson
      value: 70.49478085579923
    - type: cos_sim_spearman
      value: 76.28442852235379
    - type: euclidean_pearson
      value: 74.90910715249527
    - type: euclidean_spearman
      value: 76.28443517178847
    - type: manhattan_pearson
      value: 74.90744903779758
    - type: manhattan_spearman
      value: 76.2886829916495
  - task:
      type: Retrieval
    dataset:
      type: C-MTEB/MMarcoRetrieval
      name: MTEB MMarcoRetrieval
      config: default
      split: dev
      revision: None
    metrics:
    - type: map_at_1
      value: 64.798
    - type: map_at_10
      value: 74.263
    - type: map_at_100
      value: 74.59
    - type: map_at_1000
      value: 74.601
    - type: map_at_3
      value: 72.382
    - type: map_at_5
      value: 73.59700000000001
    - type: mrr_at_1
      value: 67.049
    - type: mrr_at_10
      value: 74.86500000000001
    - type: mrr_at_100
      value: 75.155
    - type: mrr_at_1000
      value: 75.165
    - type: mrr_at_3
      value: 73.21600000000001
    - type: mrr_at_5
      value: 74.259
    - type: ndcg_at_1
      value: 67.049
    - type: ndcg_at_10
      value: 78.104
    - type: ndcg_at_100
      value: 79.56400000000001
    - type: ndcg_at_1000
      value: 79.85600000000001
    - type: ndcg_at_3
      value: 74.54499999999999
    - type: ndcg_at_5
      value: 76.587
    - type: precision_at_1
      value: 67.049
    - type: precision_at_10
      value: 9.493
    - type: precision_at_100
      value: 1.022
    - type: precision_at_1000
      value: 0.105
    - type: precision_at_3
      value: 28.189999999999998
    - type: precision_at_5
      value: 18.003
    - type: recall_at_1
      value: 64.798
    - type: recall_at_10
      value: 89.328
    - type: recall_at_100
      value: 95.916
    - type: recall_at_1000
      value: 98.223
    - type: recall_at_3
      value: 79.93599999999999
    - type: recall_at_5
      value: 84.789
  - task:
      type: Classification
    dataset:
      type: mteb/amazon_massive_intent
      name: MTEB MassiveIntentClassification (zh-CN)
      config: zh-CN
      split: test
      revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
    metrics:
    - type: accuracy
      value: 64.01815736381977
    - type: f1
      value: 61.07806329750582
  - task:
      type: Classification
    dataset:
      type: mteb/amazon_massive_scenario
      name: MTEB MassiveScenarioClassification (zh-CN)
      config: zh-CN
      split: test
      revision: 7d571f92784cd94a019292a1f45445077d0ef634
    metrics:
    - type: accuracy
      value: 68.94754539340954
    - type: f1
      value: 68.76446930296682
  - task:
      type: Retrieval
    dataset:
      type: C-MTEB/MedicalRetrieval
      name: MTEB MedicalRetrieval
      config: default
      split: dev
      revision: None
    metrics:
    - type: map_at_1
      value: 50.1
    - type: map_at_10
      value: 56.406
    - type: map_at_100
      value: 56.958
    - type: map_at_1000
      value: 57.007
    - type: map_at_3
      value: 55.083000000000006
    - type: map_at_5
      value: 55.952999999999996
    - type: mrr_at_1
      value: 50.1
    - type: mrr_at_10
      value: 56.401999999999994
    - type: mrr_at_100
      value: 56.955
    - type: mrr_at_1000
      value: 57.004
    - type: mrr_at_3
      value: 55.05
    - type: mrr_at_5
      value: 55.95
    - type: ndcg_at_1
      value: 50.1
    - type: ndcg_at_10
      value: 59.384
    - type: ndcg_at_100
      value: 62.339
    - type: ndcg_at_1000
      value: 63.756
    - type: ndcg_at_3
      value: 56.657999999999994
    - type: ndcg_at_5
      value: 58.267
    - type: precision_at_1
      value: 50.1
    - type: precision_at_10
      value: 6.87
    - type: precision_at_100
      value: 0.832
    - type: precision_at_1000
      value: 0.095
    - type: precision_at_3
      value: 20.4
    - type: precision_at_5
      value: 13.04
    - type: recall_at_1
      value: 50.1
    - type: recall_at_10
      value: 68.7
    - type: recall_at_100
      value: 83.2
    - type: recall_at_1000
      value: 94.6
    - type: recall_at_3
      value: 61.199999999999996
    - type: recall_at_5
      value: 65.2
  - task:
      type: Reranking
    dataset:
      type: C-MTEB/Mmarco-reranking
      name: MTEB MMarcoReranking
      config: default
      split: dev
      revision: None
    metrics:
    - type: map
      value: 27.159122893681587
    - type: mrr
      value: 25.659126984126985
  - task:
      type: Classification
    dataset:
      type: C-MTEB/MultilingualSentiment-classification
      name: MTEB MultilingualSentiment
      config: default
      split: validation
      revision: None
    metrics:
    - type: accuracy
      value: 73.02666666666667
    - type: f1
      value: 72.47691397067602
  - task:
      type: PairClassification
    dataset:
      type: C-MTEB/OCNLI
      name: MTEB Ocnli
      config: default
      split: validation
      revision: None
    metrics:
    - type: cos_sim_accuracy
      value: 67.0817541959935
    - type: cos_sim_ap
      value: 72.29133043915637
    - type: cos_sim_f1
      value: 72.71207689093188
    - type: cos_sim_precision
      value: 60.16597510373444
    - type: cos_sim_recall
      value: 91.86906019007391
    - type: dot_accuracy
      value: 67.0817541959935
    - type: dot_ap
      value: 72.29133043915637
    - type: dot_f1
      value: 72.71207689093188
    - type: dot_precision
      value: 60.16597510373444
    - type: dot_recall
      value: 91.86906019007391
    - type: euclidean_accuracy
      value: 67.0817541959935
    - type: euclidean_ap
      value: 72.29133043915637
    - type: euclidean_f1
      value: 72.71207689093188
    - type: euclidean_precision
      value: 60.16597510373444
    - type: euclidean_recall
      value: 91.86906019007391
    - type: manhattan_accuracy
      value: 66.91932864103953
    - type: manhattan_ap
      value: 72.20070509521395
    - type: manhattan_f1
      value: 72.52839713925118
    - type: manhattan_precision
      value: 60.27972027972028
    - type: manhattan_recall
      value: 91.02428722280888
    - type: max_accuracy
      value: 67.0817541959935
    - type: max_ap
      value: 72.29133043915637
    - type: max_f1
      value: 72.71207689093188
  - task:
      type: Classification
    dataset:
      type: C-MTEB/OnlineShopping-classification
      name: MTEB OnlineShopping
      config: default
      split: test
      revision: None
    metrics:
    - type: accuracy
      value: 90.75000000000001
    - type: ap
      value: 87.99706544930007
    - type: f1
      value: 90.72973221476978
  - task:
      type: STS
    dataset:
      type: C-MTEB/PAWSX
      name: MTEB PAWSX
      config: default
      split: test
      revision: None
    metrics:
    - type: cos_sim_pearson
      value: 33.57372874898899
    - type: cos_sim_spearman
      value: 37.9718472605281
    - type: euclidean_pearson
      value: 38.52264008741102
    - type: euclidean_spearman
      value: 37.97184654854654
    - type: manhattan_pearson
      value: 38.50412571398273
    - type: manhattan_spearman
      value: 37.98038173979437
  - task:
      type: STS
    dataset:
      type: C-MTEB/QBQTC
      name: MTEB QBQTC
      config: default
      split: test
      revision: None
    metrics:
    - type: cos_sim_pearson
      value: 37.510457667606225
    - type: cos_sim_spearman
      value: 37.83522430820119
    - type: euclidean_pearson
      value: 36.65815519443564
    - type: euclidean_spearman
      value: 37.83519816393499
    - type: manhattan_pearson
      value: 36.66835898210608
    - type: manhattan_spearman
      value: 37.85390202705368
  - task:
      type: STS
    dataset:
      type: mteb/sts22-crosslingual-sts
      name: MTEB STS22 (zh)
      config: zh
      split: test
      revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
    metrics:
    - type: cos_sim_pearson
      value: 66.9953337569138
    - type: cos_sim_spearman
      value: 67.27632129468024
    - type: euclidean_pearson
      value: 65.83716645437758
    - type: euclidean_spearman
      value: 67.27632129468024
    - type: manhattan_pearson
      value: 65.81209103940279
    - type: manhattan_spearman
      value: 67.26678679870099
  - task:
      type: STS
    dataset:
      type: C-MTEB/STSB
      name: MTEB STSB
      config: default
      split: test
      revision: None
    metrics:
    - type: cos_sim_pearson
      value: 75.73719311549382
    - type: cos_sim_spearman
      value: 75.71173848950517
    - type: euclidean_pearson
      value: 75.23070020894484
    - type: euclidean_spearman
      value: 75.71173839940812
    - type: manhattan_pearson
      value: 75.23517292603057
    - type: manhattan_spearman
      value: 75.74250916645184
  - task:
      type: Reranking
    dataset:
      type: C-MTEB/T2Reranking
      name: MTEB T2Reranking
      config: default
      split: dev
      revision: None
    metrics:
    - type: map
      value: 66.8596523608508
    - type: mrr
      value: 76.9288884590171
  - task:
      type: Retrieval
    dataset:
      type: C-MTEB/T2Retrieval
      name: MTEB T2Retrieval
      config: default
      split: dev
      revision: None
    metrics:
    - type: map_at_1
      value: 26.618000000000002
    - type: map_at_10
      value: 74.884
    - type: map_at_100
      value: 78.65299999999999
    - type: map_at_1000
      value: 78.724
    - type: map_at_3
      value: 52.507999999999996
    - type: map_at_5
      value: 64.52799999999999
    - type: mrr_at_1
      value: 88.453
    - type: mrr_at_10
      value: 91.157
    - type: mrr_at_100
      value: 91.263
    - type: mrr_at_1000
      value: 91.268
    - type: mrr_at_3
      value: 90.672
    - type: mrr_at_5
      value: 90.96499999999999
    - type: ndcg_at_1
      value: 88.453
    - type: ndcg_at_10
      value: 82.759
    - type: ndcg_at_100
      value: 86.709
    - type: ndcg_at_1000
      value: 87.41499999999999
    - type: ndcg_at_3
      value: 84.194
    - type: ndcg_at_5
      value: 82.645
    - type: precision_at_1
      value: 88.453
    - type: precision_at_10
      value: 41.369
    - type: precision_at_100
      value: 4.9910000000000005
    - type: precision_at_1000
      value: 0.515
    - type: precision_at_3
      value: 73.79400000000001
    - type: precision_at_5
      value: 61.80799999999999
    - type: recall_at_1
      value: 26.618000000000002
    - type: recall_at_10
      value: 81.772
    - type: recall_at_100
      value: 94.55
    - type: recall_at_1000
      value: 98.184
    - type: recall_at_3
      value: 54.26499999999999
    - type: recall_at_5
      value: 67.963
  - task:
      type: Classification
    dataset:
      type: C-MTEB/TNews-classification
      name: MTEB TNews
      config: default
      split: validation
      revision: None
    metrics:
    - type: accuracy
      value: 50.690000000000005
    - type: f1
      value: 48.77079213417325
  - task:
      type: Clustering
    dataset:
      type: C-MTEB/ThuNewsClusteringP2P
      name: MTEB ThuNewsClusteringP2P
      config: default
      split: test
      revision: None
    metrics:
    - type: v_measure
      value: 62.14566804144758
  - task:
      type: Clustering
    dataset:
      type: C-MTEB/ThuNewsClusteringS2S
      name: MTEB ThuNewsClusteringS2S
      config: default
      split: test
      revision: None
    metrics:
    - type: v_measure
      value: 54.66890415410679
  - task:
      type: Retrieval
    dataset:
      type: C-MTEB/VideoRetrieval
      name: MTEB VideoRetrieval
      config: default
      split: dev
      revision: None
    metrics:
    - type: map_at_1
      value: 55.900000000000006
    - type: map_at_10
      value: 66.188
    - type: map_at_100
      value: 66.67699999999999
    - type: map_at_1000
      value: 66.691
    - type: map_at_3
      value: 64.017
    - type: map_at_5
      value: 65.462
    - type: mrr_at_1
      value: 55.800000000000004
    - type: mrr_at_10
      value: 66.13799999999999
    - type: mrr_at_100
      value: 66.62700000000001
    - type: mrr_at_1000
      value: 66.64099999999999
    - type: mrr_at_3
      value: 63.967
    - type: mrr_at_5
      value: 65.412
    - type: ndcg_at_1
      value: 55.900000000000006
    - type: ndcg_at_10
      value: 70.961
    - type: ndcg_at_100
      value: 73.22
    - type: ndcg_at_1000
      value: 73.583
    - type: ndcg_at_3
      value: 66.61
    - type: ndcg_at_5
      value: 69.18900000000001
    - type: precision_at_1
      value: 55.900000000000006
    - type: precision_at_10
      value: 8.58
    - type: precision_at_100
      value: 0.9610000000000001
    - type: precision_at_1000
      value: 0.099
    - type: precision_at_3
      value: 24.7
    - type: precision_at_5
      value: 16.06
    - type: recall_at_1
      value: 55.900000000000006
    - type: recall_at_10
      value: 85.8
    - type: recall_at_100
      value: 96.1
    - type: recall_at_1000
      value: 98.9
    - type: recall_at_3
      value: 74.1
    - type: recall_at_5
      value: 80.30000000000001
  - task:
      type: Classification
    dataset:
      type: C-MTEB/waimai-classification
      name: MTEB Waimai
      config: default
      split: test
      revision: None
    metrics:
    - type: accuracy
      value: 86.77
    - type: ap
      value: 70.21134107638184
    - type: f1
      value: 85.22521777795022
---

**新闻 | News**

**[2024-04-06]** 开源[puff](https://huggingface.co/infgrad/puff-base-v1)系列模型,**专门针对检索和语义匹配任务,更多的考虑泛化性和私有通用测试集效果,向量维度可变,中英双语****[2024-02-27]** 开源stella-mrl-large-zh-v3.5-1792d模型,支持**向量可变维度****[2024-02-17]** 开源stella v3系列、dialogue编码模型和相关训练数据。

**[2023-10-19]** 开源stella-base-en-v2 使用简单,**不需要任何前缀文本****[2023-10-12]** 开源stella-base-zh-v2和stella-large-zh-v2, 效果更好且使用简单,**不需要任何前缀文本****[2023-09-11]** 开源stella-base-zh和stella-large-zh

欢迎去[本人主页](https://huggingface.co/infgrad)查看最新模型,并提出您的宝贵意见!


## stella model


stella是一个通用的文本编码模型,主要有以下模型:

|     Model Name     | Model Size (GB) | Dimension | Sequence Length | Language | Need instruction for retrieval? |
|:------------------:|:---------------:|:---------:|:---------------:|:--------:|:-------------------------------:|
| stella-base-en-v2  |       0.2       |    768    |       512       | English  |               No                |
| stella-large-zh-v2 |      0.65       |   1024    |      1024       | Chinese  |               No                |
| stella-base-zh-v2  |       0.2       |    768    |      1024       | Chinese  |               No                |
|  stella-large-zh   |      0.65       |   1024    |      1024       | Chinese  |               Yes               |
|   stella-base-zh   |       0.2       |    768    |      1024       | Chinese  |               Yes               |

完整的训练思路和训练过程已记录在[博客1](https://zhuanlan.zhihu.com/p/655322183)和[博客2](https://zhuanlan.zhihu.com/p/662209559),欢迎阅读讨论。

**训练数据:**

1. 开源数据(wudao_base_200GB[1]、m3e[2]和simclue[3]),着重挑选了长度大于512的文本
2. 在通用语料库上使用LLM构造一批(question, paragraph)和(sentence, paragraph)数据

**训练方法:**

1. 对比学习损失函数
2. 带有难负例的对比学习损失函数(分别基于bm25和vector构造了难负例)
3. EWC(Elastic Weights Consolidation)[4]
4. cosent loss[5]
5. 每一种类型的数据一个迭代器,分别计算loss进行更新

stella-v2在stella模型的基础上,使用了更多的训练数据,同时知识蒸馏等方法去除了前置的instruction(
比如piccolo的`查询:`, `结果:`, e5的`query:``passage:`)。

**初始权重:**\
stella-base-zh和stella-large-zh分别以piccolo-base-zh[6]和piccolo-large-zh作为基础模型,512-1024的position
embedding使用层次分解位置编码[7]进行初始化。\
感谢商汤科技研究院开源的[piccolo系列模型](https://huggingface.co/sensenova)。

stella is a general-purpose text encoder, which mainly includes the following models:

|     Model Name     | Model Size (GB) | Dimension | Sequence Length | Language | Need instruction for retrieval? |
|:------------------:|:---------------:|:---------:|:---------------:|:--------:|:-------------------------------:|
| stella-base-en-v2  |       0.2       |    768    |       512       | English  |               No                |
| stella-large-zh-v2 |      0.65       |   1024    |      1024       | Chinese  |               No                |
| stella-base-zh-v2  |       0.2       |    768    |      1024       | Chinese  |               No                |
|  stella-large-zh   |      0.65       |   1024    |      1024       | Chinese  |               Yes               |
|   stella-base-zh   |       0.2       |    768    |      1024       | Chinese  |               Yes               |

The training data mainly includes:

1. Open-source training data (wudao_base_200GB, m3e, and simclue), with a focus on selecting texts with lengths greater
   than 512.
2. A batch of (question, paragraph) and (sentence, paragraph) data constructed on a general corpus using LLM.

The loss functions mainly include:

1. Contrastive learning loss function
2. Contrastive learning loss function with hard negative examples (based on bm25 and vector hard negatives)
3. EWC (Elastic Weights Consolidation)
4. cosent loss

Model weight initialization:\
stella-base-zh and stella-large-zh use piccolo-base-zh and piccolo-large-zh as the base models, respectively, and the
512-1024 position embedding uses the initialization strategy of hierarchical decomposed position encoding.

Training strategy:\
One iterator for each type of data, separately calculating the loss.

Based on stella models, stella-v2 use more training data and remove instruction by Knowledge Distillation.

## Metric

#### C-MTEB leaderboard (Chinese)

|     Model Name     | Model Size (GB) | Dimension | Sequence Length | Average (35) | Classification (9) | Clustering (4) | Pair Classification (2) | Reranking (4) | Retrieval (8) | STS (8) |
|:------------------:|:---------------:|:---------:|:---------------:|:------------:|:------------------:|:--------------:|:-----------------------:|:-------------:|:-------------:|:-------:|
| stella-large-zh-v2 |      0.65       |   1024    |      1024       |    65.13     |       69.05        |     49.16      |          82.68          |     66.41     |     70.14     |  58.66  |
| stella-base-zh-v2  |       0.2       |    768    |      1024       |    64.36     |       68.29        |      49.4      |          79.95          |     66.1      |     70.08     |  56.92  |
|  stella-large-zh   |      0.65       |   1024    |      1024       |    64.54     |       67.62        |     48.65      |          78.72          |     65.98     |     71.02     |  58.3   |
|   stella-base-zh   |       0.2       |    768    |      1024       |    64.16     |       67.77        |      48.7      |          76.09          |     66.95     |     71.07     |  56.54  |

#### MTEB leaderboard (English)

|    Model Name     | Model Size (GB) | Dimension | Sequence Length | Average (56) | Classification (12) | Clustering (11) | Pair Classification (3) | Reranking (4) | Retrieval (15) | STS (10) | Summarization  (1) |
|:-----------------:|:---------------:|:---------:|:---------------:|:------------:|:-------------------:|:---------------:|:-----------------------:|:-------------:|:--------------:|:--------:|:------------------:|
| stella-base-en-v2 |       0.2       |    768    |       512       |    62.61     |        75.28        |      44.9       |          86.45          |     58.77     |      50.1      |  83.02   |       32.52        |

#### Reproduce our results

**C-MTEB:** 

```python
import torch
import numpy as np
from typing import List
from mteb import MTEB
from sentence_transformers import SentenceTransformer


class FastTextEncoder():
    def __init__(self, model_name):
        self.model = SentenceTransformer(model_name).cuda().half().eval()
        self.model.max_seq_length = 512

    def encode(
            self,
            input_texts: List[str],
            *args,
            **kwargs
    ):
        new_sens = list(set(input_texts))
        new_sens.sort(key=lambda x: len(x), reverse=True)
        vecs = self.model.encode(
            new_sens, normalize_embeddings=True, convert_to_numpy=True, batch_size=256
        ).astype(np.float32)
        sen2arrid = {sen: idx for idx, sen in enumerate(new_sens)}
        vecs = vecs[[sen2arrid[sen] for sen in input_texts]]
        torch.cuda.empty_cache()
        return vecs


if __name__ == '__main__':
    model_name = "infgrad/stella-base-zh-v2"
    output_folder = "zh_mteb_results/stella-base-zh-v2"
    task_names = [t.description["name"] for t in MTEB(task_langs=['zh', 'zh-CN']).tasks]
    model = FastTextEncoder(model_name)
    for task in task_names:
        MTEB(tasks=[task], task_langs=['zh', 'zh-CN']).run(model, output_folder=output_folder)

```

**MTEB:**

You can use official script to reproduce our result. [scripts/run_mteb_english.py](https://github.com/embeddings-benchmark/mteb/blob/main/scripts/run_mteb_english.py)

#### Evaluation for long text

经过实际观察发现,C-MTEB的评测数据长度基本都是小于512的,
更致命的是那些长度大于512的文本,其重点都在前半部分
这里以CMRC2018的数据为例说明这个问题:

```
question: 《无双大蛇z》是谁旗下ω-force开发的动作游戏?

passage:《无双大蛇z》是光荣旗下ω-force开发的动作游戏,于2009年3月12日登陆索尼playstation3,并于2009年11月27日推......
```

passage长度为800多,大于512,但是对于这个question而言只需要前面40个字就足以检索,多的内容对于模型而言是一种噪声,反而降低了效果。\
简言之,现有数据集的2个问题:\
1)长度大于512的过少\
2)即便大于512,对于检索而言也只需要前512的文本内容\
导致**无法准确评估模型的长文本编码能力。**

为了解决这个问题,搜集了相关开源数据并使用规则进行过滤,最终整理了6份长文本测试集,他们分别是:

- CMRC2018,通用百科
- CAIL,法律阅读理解
- DRCD,繁体百科,已转简体
- Military,军工问答
- Squad,英文阅读理解,已转中文
- Multifieldqa_zh,清华的大模型长文本理解能力评测数据[9]

处理规则是选取答案在512长度之后的文本,短的测试数据会欠采样一下,长短文本占比约为1:2,所以模型既得理解短文本也得理解长文本。
除了Military数据集,我们提供了其他5个测试数据的下载地址:https://drive.google.com/file/d/1WC6EWaCbVgz-vPMDFH4TwAMkLyh5WNcN/view?usp=sharing

评测指标为Recall@5, 结果如下:

|     Dataset     | piccolo-base-zh | piccolo-large-zh | bge-base-zh | bge-large-zh | stella-base-zh | stella-large-zh | 
|:---------------:|:---------------:|:----------------:|:-----------:|:------------:|:--------------:|:---------------:|
|    CMRC2018     |      94.34      |      93.82       |    91.56    |    93.12     |     96.08      |      95.56      | 
|      CAIL       |      28.04      |      33.64       |    31.22    |    33.94     |     34.62      |      37.18      | 
|      DRCD       |      78.25      |       77.9       |    78.34    |    80.26     |     86.14      |      84.58      | 
|    Military     |      76.61      |      73.06       |    75.65    |    75.81     |     83.71      |      80.48      | 
|      Squad      |      91.21      |      86.61       |    87.87    |    90.38     |     93.31      |      91.21      | 
| Multifieldqa_zh |      81.41      |      83.92       |    83.92    |    83.42     |      79.9      |      80.4       | 
|   **Average**   |      74.98      |      74.83       |    74.76    |    76.15     |   **78.96**    |    **78.24**    | 

**注意:** 因为长文本评测数据数量稀少,所以构造时也使用了train部分,如果自行评测,请注意模型的训练数据以免数据泄露。

## Usage

#### stella 中文系列模型

stella-base-zh 和 stella-large-zh: 本模型是在piccolo基础上训练的,因此**用法和piccolo完全一致**
,即在检索重排任务上给query和passage加上`查询: ``结果: `。对于短短匹配不需要做任何操作。

stella-base-zh-v2 和 stella-large-zh-v2: 本模型使用简单,**任何使用场景中都不需要加前缀文本**。

stella中文系列模型均使用mean pooling做为文本向量。

在sentence-transformer库中的使用方法:

```python
from sentence_transformers import SentenceTransformer

sentences = ["数据1", "数据2"]
model = SentenceTransformer('infgrad/stella-base-zh-v2')
print(model.max_seq_length)
embeddings_1 = model.encode(sentences, normalize_embeddings=True)
embeddings_2 = model.encode(sentences, normalize_embeddings=True)
similarity = embeddings_1 @ embeddings_2.T
print(similarity)
```

直接使用transformers库:

```python
from transformers import AutoModel, AutoTokenizer
from sklearn.preprocessing import normalize

model = AutoModel.from_pretrained('infgrad/stella-base-zh-v2')
tokenizer = AutoTokenizer.from_pretrained('infgrad/stella-base-zh-v2')
sentences = ["数据1", "数据ABCDEFGH"]
batch_data = tokenizer(
    batch_text_or_text_pairs=sentences,
    padding="longest",
    return_tensors="pt",
    max_length=1024,
    truncation=True,
)
attention_mask = batch_data["attention_mask"]
model_output = model(**batch_data)
last_hidden = model_output.last_hidden_state.masked_fill(~attention_mask[..., None].bool(), 0.0)
vectors = last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]
vectors = normalize(vectors, norm="l2", axis=1, )
print(vectors.shape)  # 2,768
```

#### stella models for English

**Using Sentence-Transformers:**

```python
from sentence_transformers import SentenceTransformer

sentences = ["one car come", "one car go"]
model = SentenceTransformer('infgrad/stella-base-en-v2')
print(model.max_seq_length)
embeddings_1 = model.encode(sentences, normalize_embeddings=True)
embeddings_2 = model.encode(sentences, normalize_embeddings=True)
similarity = embeddings_1 @ embeddings_2.T
print(similarity)
```

**Using HuggingFace Transformers:**

```python
from transformers import AutoModel, AutoTokenizer
from sklearn.preprocessing import normalize

model = AutoModel.from_pretrained('infgrad/stella-base-en-v2')
tokenizer = AutoTokenizer.from_pretrained('infgrad/stella-base-en-v2')
sentences = ["one car come", "one car go"]
batch_data = tokenizer(
    batch_text_or_text_pairs=sentences,
    padding="longest",
    return_tensors="pt",
    max_length=512,
    truncation=True,
)
attention_mask = batch_data["attention_mask"]
model_output = model(**batch_data)
last_hidden = model_output.last_hidden_state.masked_fill(~attention_mask[..., None].bool(), 0.0)
vectors = last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]
vectors = normalize(vectors, norm="l2", axis=1, )
print(vectors.shape)  # 2,768
```

## Training Detail

**硬件:** 单卡A100-80GB

**环境:** torch1.13.*; transformers-trainer + deepspeed + gradient-checkpointing

**学习率:** 1e-6

**batch_size:** base模型为1024,额外增加20%的难负例;large模型为768,额外增加20%的难负例

**数据量:** 第一版模型约100万,其中用LLM构造的数据约有200K. LLM模型大小为13b。v2系列模型到了2000万训练数据。

## ToDoList

**评测的稳定性:**
评测过程中发现Clustering任务会和官方的结果不一致,大约有±0.0x的小差距,原因是聚类代码没有设置random_seed,差距可以忽略不计,不影响评测结论。

**更高质量的长文本训练和测试数据:** 训练数据多是用13b模型构造的,肯定会存在噪声。
测试数据基本都是从mrc数据整理来的,所以问题都是factoid类型,不符合真实分布。

**OOD的性能:** 虽然近期出现了很多向量编码模型,但是对于不是那么通用的domain,这一众模型包括stella、openai和cohere,
它们的效果均比不上BM25。

## Reference

1. https://www.scidb.cn/en/detail?dataSetId=c6a3fe684227415a9db8e21bac4a15ab
2. https://github.com/wangyuxinwhy/uniem
3. https://github.com/CLUEbenchmark/SimCLUE
4. https://arxiv.org/abs/1612.00796
5. https://kexue.fm/archives/8847
6. https://huggingface.co/sensenova/piccolo-base-zh
7. https://kexue.fm/archives/7947
8. https://github.com/FlagOpen/FlagEmbedding
9. https://github.com/THUDM/LongBench