--- language: - bas license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - mozilla-foundation/common_voice_7_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: XLS-R-300M - Basaa results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: bas metrics: - name: Test WER type: wer value: 104.08 - name: Test CER type: cer value: 228.48 --- # wav2vec2-large-xls-r-300m-basaa This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - BAS dataset. It achieves the following results on the evaluation set: - Loss: 0.5975 - Wer: 0.4981 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 200.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 2.9287 | 15.62 | 500 | 2.8774 | 1.0 | | 1.1182 | 31.25 | 1000 | 0.6248 | 0.7131 | | 0.8329 | 46.88 | 1500 | 0.5573 | 0.5792 | | 0.7109 | 62.5 | 2000 | 0.5420 | 0.5683 | | 0.6295 | 78.12 | 2500 | 0.5166 | 0.5395 | | 0.5715 | 93.75 | 3000 | 0.5487 | 0.5629 | | 0.5016 | 109.38 | 3500 | 0.5370 | 0.5471 | | 0.4661 | 125.0 | 4000 | 0.5621 | 0.5395 | | 0.423 | 140.62 | 4500 | 0.5658 | 0.5248 | | 0.3793 | 156.25 | 5000 | 0.5921 | 0.4981 | | 0.3651 | 171.88 | 5500 | 0.5987 | 0.4888 | | 0.3351 | 187.5 | 6000 | 0.6017 | 0.4948 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0