--- language: - fi license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_7_0 - generated_from_trainer - fi - robust-speech-event - model_for_talk datasets: - common_voice model-index: - name: XLS-R-300M - Finnish results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: fi metrics: - name: Test WER type: wer value: 29.97 - name: Test CER type: cer value: NA --- # wav2vec2-large-xls-r-300m-finnish This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - FI dataset. It achieves the following results on the evaluation set: - Loss: 0.2307 - Wer: 0.2984 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 70.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.9032 | 4.39 | 500 | 2.8768 | 1.0 | | 1.5724 | 8.77 | 1000 | 0.5638 | 0.6438 | | 1.1818 | 13.16 | 1500 | 0.3338 | 0.4759 | | 1.0798 | 17.54 | 2000 | 0.2876 | 0.4086 | | 1.0296 | 21.93 | 2500 | 0.2694 | 0.4248 | | 1.0014 | 26.32 | 3000 | 0.2626 | 0.3733 | | 0.9616 | 30.7 | 3500 | 0.2391 | 0.3294 | | 0.9303 | 35.09 | 4000 | 0.2352 | 0.3218 | | 0.9248 | 39.47 | 4500 | 0.2351 | 0.3207 | | 0.8837 | 43.86 | 5000 | 0.2341 | 0.3103 | | 0.8887 | 48.25 | 5500 | 0.2311 | 0.3115 | | 0.8529 | 52.63 | 6000 | 0.2230 | 0.3001 | | 0.8404 | 57.02 | 6500 | 0.2279 | 0.3054 | | 0.8242 | 61.4 | 7000 | 0.2298 | 0.3006 | | 0.8288 | 65.79 | 7500 | 0.2333 | 0.2997 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0