infinitejoy commited on
Commit
ff43006
·
1 Parent(s): c088c55

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +69 -0
README.md ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - common_voice
7
+ model-index:
8
+ - name: wav2vec2-large-xls-r-300m-hindi
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # wav2vec2-large-xls-r-300m-hindi
16
+
17
+ This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 5.8345
20
+ - Wer: 1.0592
21
+
22
+ ## Model description
23
+
24
+ More information needed
25
+
26
+ ## Intended uses & limitations
27
+
28
+ More information needed
29
+
30
+ ## Training and evaluation data
31
+
32
+ More information needed
33
+
34
+ ## Training procedure
35
+
36
+ ### Training hyperparameters
37
+
38
+ The following hyperparameters were used during training:
39
+ - learning_rate: 0.0003
40
+ - train_batch_size: 16
41
+ - eval_batch_size: 8
42
+ - seed: 42
43
+ - gradient_accumulation_steps: 2
44
+ - total_train_batch_size: 32
45
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
46
+ - lr_scheduler_type: linear
47
+ - lr_scheduler_warmup_steps: 500
48
+ - num_epochs: 400
49
+ - mixed_precision_training: Native AMP
50
+
51
+ ### Training results
52
+
53
+ | Training Loss | Epoch | Step | Validation Loss | Wer |
54
+ |:-------------:|:------:|:----:|:---------------:|:------:|
55
+ | 6.0837 | 57.14 | 400 | 3.3819 | 1.0081 |
56
+ | 0.2254 | 114.29 | 800 | 4.4935 | 1.0255 |
57
+ | 0.061 | 171.43 | 1200 | 5.1464 | 1.0870 |
58
+ | 0.0282 | 228.57 | 1600 | 5.6430 | 1.0789 |
59
+ | 0.0144 | 285.71 | 2000 | 5.7916 | 1.0940 |
60
+ | 0.0077 | 342.86 | 2400 | 5.8701 | 1.0580 |
61
+ | 0.0041 | 400.0 | 2800 | 5.8345 | 1.0592 |
62
+
63
+
64
+ ### Framework versions
65
+
66
+ - Transformers 4.11.3
67
+ - Pytorch 1.10.0+cu113
68
+ - Datasets 1.13.3
69
+ - Tokenizers 0.10.3