--- language: - tt license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_7_0 - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-tatar results: [] --- # wav2vec2-large-xls-r-300m-tatar This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - TT dataset. It achieves the following results on the evaluation set: - Loss: 0.1959 - Wer: 0.2454 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 4000 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 1.173 | 9.66 | 4000 | 0.2920 | 0.3608 | | 0.9433 | 19.32 | 8000 | 0.2336 | 0.3026 | | 0.8552 | 28.99 | 12000 | 0.2221 | 0.2799 | | 0.7863 | 38.65 | 16000 | 0.1953 | 0.2479 | | 0.7365 | 48.31 | 20000 | 0.1968 | 0.2449 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0