File size: 1,193 Bytes
a234f55 aab68c0 a234f55 a8f1854 a234f55 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 242.40 +/- 15.91
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This model is trained using **PPO [proximal policy optimization algorithm invented by OpenAI]** The RL-based agent playing to land correctly on the moon using **LunarLander** environment as simulator.
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
repo_id = "innocent-charles/RL-ppo-LunarLander-v2"
filename = "RL-ppo-LunarLander-v2.zip"
custom_objects = {
"learning_rate": 0.0,
"lr_schedule": lambda _: 0.0,
"clip_range": lambda _: 0.0,
}
checkpoint = load_from_hub(repo_id, filename)
model = PPO.load(checkpoint, custom_objects=custom_objects, print_system_info=True)
...
```
|