x54-729
commited on
Commit
·
848badb
1
Parent(s):
8b09dc8
keep internlm2 only
Browse files- configuration_internlm.py +0 -164
- tokenization_internlm.py +0 -240
configuration_internlm.py
DELETED
@@ -1,164 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright (c) InternLM. All rights reserved.
|
3 |
-
#
|
4 |
-
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
5 |
-
# and OPT implementations in this library. It has been modified from its
|
6 |
-
# original forms to accommodate minor architectural differences compared
|
7 |
-
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
8 |
-
#
|
9 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
-
# you may not use this file except in compliance with the License.
|
11 |
-
# You may obtain a copy of the License at
|
12 |
-
#
|
13 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
14 |
-
#
|
15 |
-
# Unless required by applicable law or agreed to in writing, software
|
16 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
17 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
-
# See the License for the specific language governing permissions and
|
19 |
-
# limitations under the License.
|
20 |
-
""" InternLM model configuration"""
|
21 |
-
|
22 |
-
from transformers.configuration_utils import PretrainedConfig
|
23 |
-
from transformers.utils import logging
|
24 |
-
|
25 |
-
logger = logging.get_logger(__name__)
|
26 |
-
|
27 |
-
INTERNLM_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
|
28 |
-
|
29 |
-
|
30 |
-
class InternLMConfig(PretrainedConfig):
|
31 |
-
r"""
|
32 |
-
This is the configuration class to store the configuration of a [`InternLMModel`]. It is used to instantiate
|
33 |
-
an InternLM model according to the specified arguments, defining the model architecture. Instantiating a
|
34 |
-
configuration with the defaults will yield a similar configuration to that of the InternLM-7B.
|
35 |
-
|
36 |
-
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
37 |
-
documentation from [`PretrainedConfig`] for more information.
|
38 |
-
|
39 |
-
|
40 |
-
Args:
|
41 |
-
vocab_size (`int`, *optional*, defaults to 32000):
|
42 |
-
Vocabulary size of the InternLM model. Defines the number of different tokens that can be represented by the
|
43 |
-
`inputs_ids` passed when calling [`InternLMModel`]
|
44 |
-
hidden_size (`int`, *optional*, defaults to 4096):
|
45 |
-
Dimension of the hidden representations.
|
46 |
-
intermediate_size (`int`, *optional*, defaults to 11008):
|
47 |
-
Dimension of the MLP representations.
|
48 |
-
num_hidden_layers (`int`, *optional*, defaults to 32):
|
49 |
-
Number of hidden layers in the Transformer encoder.
|
50 |
-
num_attention_heads (`int`, *optional*, defaults to 32):
|
51 |
-
Number of attention heads for each attention layer in the Transformer encoder.
|
52 |
-
num_key_value_heads (`int`, *optional*):
|
53 |
-
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
54 |
-
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
55 |
-
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
56 |
-
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
57 |
-
by meanpooling all the original heads within that group. For more details checkout [this
|
58 |
-
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
59 |
-
`num_attention_heads`.
|
60 |
-
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
61 |
-
The non-linear activation function (function or string) in the decoder.
|
62 |
-
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
63 |
-
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
64 |
-
just in case (e.g., 512 or 1024 or 2048).
|
65 |
-
initializer_range (`float`, *optional*, defaults to 0.02):
|
66 |
-
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
67 |
-
rms_norm_eps (`float`, *optional*, defaults to 1e-12):
|
68 |
-
The epsilon used by the rms normalization layers.
|
69 |
-
use_cache (`bool`, *optional*, defaults to `True`):
|
70 |
-
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
71 |
-
relevant if `config.is_decoder=True`.
|
72 |
-
tie_word_embeddings(`bool`, *optional*, defaults to `False`):
|
73 |
-
Whether to tie weight embeddings
|
74 |
-
Example:
|
75 |
-
|
76 |
-
```python
|
77 |
-
>>> from transformers import InternLMModel, InternLMConfig
|
78 |
-
|
79 |
-
>>> # Initializing a InternLM internlm-7b style configuration
|
80 |
-
>>> configuration = InternLMConfig()
|
81 |
-
|
82 |
-
>>> # Initializing a model from the internlm-7b style configuration
|
83 |
-
>>> model = InternLMModel(configuration)
|
84 |
-
|
85 |
-
>>> # Accessing the model configuration
|
86 |
-
>>> configuration = model.config
|
87 |
-
```"""
|
88 |
-
model_type = "internlm"
|
89 |
-
_auto_class = "AutoConfig"
|
90 |
-
|
91 |
-
def __init__( # pylint: disable=W0102
|
92 |
-
self,
|
93 |
-
vocab_size=103168,
|
94 |
-
hidden_size=4096,
|
95 |
-
intermediate_size=11008,
|
96 |
-
num_hidden_layers=32,
|
97 |
-
num_attention_heads=32,
|
98 |
-
num_key_value_heads=None,
|
99 |
-
hidden_act="silu",
|
100 |
-
max_position_embeddings=2048,
|
101 |
-
initializer_range=0.02,
|
102 |
-
rms_norm_eps=1e-6,
|
103 |
-
use_cache=True,
|
104 |
-
pad_token_id=0,
|
105 |
-
bos_token_id=1,
|
106 |
-
eos_token_id=2,
|
107 |
-
tie_word_embeddings=False,
|
108 |
-
bias=True,
|
109 |
-
rope_theta=10000,
|
110 |
-
rope_scaling=None,
|
111 |
-
attn_implementation="eager",
|
112 |
-
**kwargs,
|
113 |
-
):
|
114 |
-
self.vocab_size = vocab_size
|
115 |
-
self.max_position_embeddings = max_position_embeddings
|
116 |
-
self.hidden_size = hidden_size
|
117 |
-
self.intermediate_size = intermediate_size
|
118 |
-
self.num_hidden_layers = num_hidden_layers
|
119 |
-
self.num_attention_heads = num_attention_heads
|
120 |
-
self.bias = bias
|
121 |
-
|
122 |
-
if num_key_value_heads is None:
|
123 |
-
num_key_value_heads = num_attention_heads
|
124 |
-
self.num_key_value_heads = num_key_value_heads
|
125 |
-
|
126 |
-
self.hidden_act = hidden_act
|
127 |
-
self.initializer_range = initializer_range
|
128 |
-
self.rms_norm_eps = rms_norm_eps
|
129 |
-
self.use_cache = use_cache
|
130 |
-
self.rope_theta = rope_theta
|
131 |
-
self.rope_scaling = rope_scaling
|
132 |
-
self._rope_scaling_validation()
|
133 |
-
|
134 |
-
self.attn_implementation = attn_implementation
|
135 |
-
if self.attn_implementation is None:
|
136 |
-
self.attn_implementation = "eager"
|
137 |
-
super().__init__(
|
138 |
-
pad_token_id=pad_token_id,
|
139 |
-
bos_token_id=bos_token_id,
|
140 |
-
eos_token_id=eos_token_id,
|
141 |
-
tie_word_embeddings=tie_word_embeddings,
|
142 |
-
**kwargs,
|
143 |
-
)
|
144 |
-
|
145 |
-
def _rope_scaling_validation(self):
|
146 |
-
"""
|
147 |
-
Validate the `rope_scaling` configuration.
|
148 |
-
"""
|
149 |
-
if self.rope_scaling is None:
|
150 |
-
return
|
151 |
-
|
152 |
-
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
|
153 |
-
raise ValueError(
|
154 |
-
"`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, "
|
155 |
-
f"got {self.rope_scaling}"
|
156 |
-
)
|
157 |
-
rope_scaling_type = self.rope_scaling.get("type", None)
|
158 |
-
rope_scaling_factor = self.rope_scaling.get("factor", None)
|
159 |
-
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
|
160 |
-
raise ValueError(
|
161 |
-
f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
|
162 |
-
)
|
163 |
-
if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor < 1.0:
|
164 |
-
raise ValueError(f"`rope_scaling`'s factor field must be a float >= 1, got {rope_scaling_factor}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
tokenization_internlm.py
DELETED
@@ -1,240 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright (c) InternLM. All rights reserved.
|
3 |
-
#
|
4 |
-
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
5 |
-
# and OPT implementations in this library. It has been modified from its
|
6 |
-
# original forms to accommodate minor architectural differences compared
|
7 |
-
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
8 |
-
#
|
9 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
-
# you may not use this file except in compliance with the License.
|
11 |
-
# You may obtain a copy of the License at
|
12 |
-
#
|
13 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
14 |
-
#
|
15 |
-
# Unless required by applicable law or agreed to in writing, software
|
16 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
17 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
-
# See the License for the specific language governing permissions and
|
19 |
-
# limitations under the License.
|
20 |
-
|
21 |
-
"""Tokenization classes for IntermLM."""
|
22 |
-
import os
|
23 |
-
from shutil import copyfile
|
24 |
-
from typing import Any, Dict, List, Optional, Tuple
|
25 |
-
|
26 |
-
import sentencepiece as spm
|
27 |
-
from transformers.tokenization_utils import PreTrainedTokenizer
|
28 |
-
from transformers.utils import logging
|
29 |
-
|
30 |
-
logger = logging.get_logger(__name__)
|
31 |
-
|
32 |
-
VOCAB_FILES_NAMES = {"vocab_file": "./tokenizer.model"}
|
33 |
-
|
34 |
-
PRETRAINED_VOCAB_FILES_MAP = {}
|
35 |
-
|
36 |
-
|
37 |
-
class InternLMTokenizer(PreTrainedTokenizer):
|
38 |
-
"""
|
39 |
-
Construct a InternLM tokenizer. Based on byte-level Byte-Pair-Encoding.
|
40 |
-
|
41 |
-
Args:
|
42 |
-
vocab_file (`str`):
|
43 |
-
Path to the vocabulary file.
|
44 |
-
"""
|
45 |
-
|
46 |
-
vocab_files_names = VOCAB_FILES_NAMES
|
47 |
-
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
48 |
-
model_input_names = ["input_ids", "attention_mask"]
|
49 |
-
_auto_class = "AutoTokenizer"
|
50 |
-
|
51 |
-
def __init__(
|
52 |
-
self,
|
53 |
-
vocab_file,
|
54 |
-
unk_token="<unk>",
|
55 |
-
bos_token="<s>",
|
56 |
-
eos_token="</s>",
|
57 |
-
pad_token="</s>",
|
58 |
-
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
59 |
-
add_bos_token=True,
|
60 |
-
add_eos_token=False,
|
61 |
-
decode_with_prefix_space=False,
|
62 |
-
clean_up_tokenization_spaces=False,
|
63 |
-
**kwargs,
|
64 |
-
):
|
65 |
-
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
|
66 |
-
self.vocab_file = vocab_file
|
67 |
-
self.add_bos_token = add_bos_token
|
68 |
-
self.add_eos_token = add_eos_token
|
69 |
-
self.decode_with_prefix_space = decode_with_prefix_space
|
70 |
-
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
71 |
-
self.sp_model.Load(vocab_file)
|
72 |
-
self._no_prefix_space_tokens = None
|
73 |
-
super().__init__(
|
74 |
-
bos_token=bos_token,
|
75 |
-
eos_token=eos_token,
|
76 |
-
unk_token=unk_token,
|
77 |
-
pad_token=pad_token,
|
78 |
-
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
79 |
-
**kwargs,
|
80 |
-
)
|
81 |
-
|
82 |
-
""" Initialization"""
|
83 |
-
|
84 |
-
@property
|
85 |
-
def no_prefix_space_tokens(self):
|
86 |
-
if self._no_prefix_space_tokens is None:
|
87 |
-
vocab = self.convert_ids_to_tokens(list(range(self.vocab_size)))
|
88 |
-
self._no_prefix_space_tokens = {i for i, tok in enumerate(vocab) if not tok.startswith("▁")}
|
89 |
-
return self._no_prefix_space_tokens
|
90 |
-
|
91 |
-
@property
|
92 |
-
def vocab_size(self):
|
93 |
-
"""Returns vocab size"""
|
94 |
-
return self.sp_model.get_piece_size()
|
95 |
-
|
96 |
-
@property
|
97 |
-
def bos_token_id(self) -> Optional[int]:
|
98 |
-
return self.sp_model.bos_id()
|
99 |
-
|
100 |
-
@property
|
101 |
-
def eos_token_id(self) -> Optional[int]:
|
102 |
-
return self.sp_model.eos_id()
|
103 |
-
|
104 |
-
def get_vocab(self):
|
105 |
-
"""Returns vocab as a dict"""
|
106 |
-
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
|
107 |
-
vocab.update(self.added_tokens_encoder)
|
108 |
-
return vocab
|
109 |
-
|
110 |
-
def _tokenize(self, text):
|
111 |
-
"""Returns a tokenized string."""
|
112 |
-
return self.sp_model.encode(text, out_type=str)
|
113 |
-
|
114 |
-
def _convert_token_to_id(self, token):
|
115 |
-
"""Converts a token (str) in an id using the vocab."""
|
116 |
-
return self.sp_model.piece_to_id(token)
|
117 |
-
|
118 |
-
def _convert_id_to_token(self, index):
|
119 |
-
"""Converts an index (integer) in a token (str) using the vocab."""
|
120 |
-
token = self.sp_model.IdToPiece(index)
|
121 |
-
return token
|
122 |
-
|
123 |
-
def _maybe_add_prefix_space(self, tokens, decoded):
|
124 |
-
if tokens and tokens[0] not in self.no_prefix_space_tokens:
|
125 |
-
return " " + decoded
|
126 |
-
else:
|
127 |
-
return decoded
|
128 |
-
|
129 |
-
def convert_tokens_to_string(self, tokens):
|
130 |
-
"""Converts a sequence of tokens (string) in a single string."""
|
131 |
-
current_sub_tokens = []
|
132 |
-
out_string = ""
|
133 |
-
prev_is_special = False
|
134 |
-
for token in tokens:
|
135 |
-
# make sure that special tokens are not decoded using sentencepiece model
|
136 |
-
if token in self.all_special_tokens:
|
137 |
-
if not prev_is_special:
|
138 |
-
out_string += " "
|
139 |
-
out_string += self.sp_model.decode(current_sub_tokens) + token
|
140 |
-
prev_is_special = True
|
141 |
-
current_sub_tokens = []
|
142 |
-
else:
|
143 |
-
current_sub_tokens.append(token)
|
144 |
-
prev_is_special = False
|
145 |
-
out_string += self.sp_model.decode(current_sub_tokens)
|
146 |
-
out_string = self.clean_up_tokenization(out_string)
|
147 |
-
out_string = self._maybe_add_prefix_space(tokens=tokens, decoded=out_string)
|
148 |
-
return out_string[1:]
|
149 |
-
|
150 |
-
def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
151 |
-
"""
|
152 |
-
Save the vocabulary and special tokens file to a directory.
|
153 |
-
|
154 |
-
Args:
|
155 |
-
save_directory (`str`):
|
156 |
-
The directory in which to save the vocabulary.
|
157 |
-
|
158 |
-
Returns:
|
159 |
-
`Tuple(str)`: Paths to the files saved.
|
160 |
-
"""
|
161 |
-
if not os.path.isdir(save_directory):
|
162 |
-
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
163 |
-
return
|
164 |
-
out_vocab_file = os.path.join(
|
165 |
-
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
166 |
-
)
|
167 |
-
|
168 |
-
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
|
169 |
-
copyfile(self.vocab_file, out_vocab_file)
|
170 |
-
elif not os.path.isfile(self.vocab_file):
|
171 |
-
with open(out_vocab_file, "wb") as fi:
|
172 |
-
content_spiece_model = self.sp_model.serialized_model_proto()
|
173 |
-
fi.write(content_spiece_model)
|
174 |
-
|
175 |
-
return (out_vocab_file,)
|
176 |
-
|
177 |
-
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
|
178 |
-
if self.add_bos_token:
|
179 |
-
bos_token_ids = [self.bos_token_id]
|
180 |
-
else:
|
181 |
-
bos_token_ids = []
|
182 |
-
|
183 |
-
output = bos_token_ids + token_ids_0
|
184 |
-
|
185 |
-
if token_ids_1 is not None:
|
186 |
-
output = output + token_ids_1
|
187 |
-
|
188 |
-
if self.add_eos_token:
|
189 |
-
output = output + [self.eos_token_id]
|
190 |
-
|
191 |
-
return output
|
192 |
-
|
193 |
-
def get_special_tokens_mask(
|
194 |
-
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
195 |
-
) -> List[int]:
|
196 |
-
"""
|
197 |
-
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
198 |
-
special tokens using the tokenizer `prepare_for_model` method.
|
199 |
-
|
200 |
-
Args:
|
201 |
-
token_ids_0 (`List[int]`):
|
202 |
-
List of IDs.
|
203 |
-
token_ids_1 (`List[int]`, *optional*):
|
204 |
-
Optional second list of IDs for sequence pairs.
|
205 |
-
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
206 |
-
Whether or not the token list is already formatted with special tokens for the model.
|
207 |
-
|
208 |
-
Returns:
|
209 |
-
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
210 |
-
"""
|
211 |
-
if already_has_special_tokens:
|
212 |
-
return super().get_special_tokens_mask(
|
213 |
-
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
214 |
-
)
|
215 |
-
|
216 |
-
if token_ids_1 is None:
|
217 |
-
return [1] + ([0] * len(token_ids_0)) + [1]
|
218 |
-
return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
|
219 |
-
|
220 |
-
def create_token_type_ids_from_sequences(
|
221 |
-
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
222 |
-
) -> List[int]:
|
223 |
-
"""
|
224 |
-
Create a mask from the two sequences passed to be used in a sequence-pair classification task. T5 does not make
|
225 |
-
use of token type ids, therefore a list of zeros is returned.
|
226 |
-
|
227 |
-
Args:
|
228 |
-
token_ids_0 (`List[int]`):
|
229 |
-
List of IDs.
|
230 |
-
token_ids_1 (`List[int]`, *optional*):
|
231 |
-
Optional second list of IDs for sequence pairs.
|
232 |
-
|
233 |
-
Returns:
|
234 |
-
`List[int]`: List of zeros.
|
235 |
-
"""
|
236 |
-
eos = [self.eos_token_id]
|
237 |
-
|
238 |
-
if token_ids_1 is None:
|
239 |
-
return len(token_ids_0 + eos) * [0]
|
240 |
-
return len(token_ids_0 + eos + token_ids_1 + eos) * [0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|