File size: 3,906 Bytes
4c58e5f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
---
library_name: peft
tags:
- generated_from_trainer
base_model: intervitens/internlm2-base-20b-llama
model-index:
- name: internlm-limarp-lora
results: []
---
Don't use this yet, there's a problem with the llamafied internlm2 tokenizer.
Prompt format: ChatML.
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.3.0`
```yaml
base_model: /data/internlm2-base-20b-llama
model_type: LlamaForCausalLM
tokenizer_type: LlamaTokenizer
is_llama_derived_model: true
load_in_8bit: true
load_in_4bit: false
strict: false
datasets:
- path: /data/train-all-8k.jsonl
type: completion
dataset_prepared_path:
val_set_size: 0.05
output_dir: /data/internlm-limarp-lora-out
sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true
adapter: lora
lora_model_dir:
lora_r: 128
lora_alpha: 64
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 4
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.00002
train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: false
gradient_checkpointing: true
gradient_checkpointing_kwargs:
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
s2_attention:
warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
eval_table_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
bos_token: "<s>"
eos_token: "</s>"
unk_token: "<unk>"
```
</details><br>
# internlm-limarp-lora
This model was trained from scratch on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.1216
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: True
- load_in_4bit: False
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: fp4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float32
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.3563 | 0.01 | 1 | 2.3995 |
| 2.1815 | 0.25 | 37 | 2.2693 |
| 2.1364 | 0.51 | 74 | 2.1684 |
| 2.1355 | 0.76 | 111 | 2.1526 |
| 2.1624 | 1.03 | 148 | 2.1435 |
| 2.1326 | 1.28 | 185 | 2.1367 |
| 1.9987 | 1.54 | 222 | 2.1330 |
| 2.0494 | 1.79 | 259 | 2.1291 |
| 2.0505 | 2.04 | 296 | 2.1266 |
| 2.075 | 2.3 | 333 | 2.1243 |
| 2.0183 | 2.55 | 370 | 2.1229 |
| 2.1047 | 2.81 | 407 | 2.1227 |
| 2.1309 | 3.06 | 444 | 2.1218 |
| 2.1249 | 3.31 | 481 | 2.1214 |
| 2.1423 | 3.57 | 518 | 2.1214 |
| 2.0913 | 3.82 | 555 | 2.1216 |
### Framework versions
- PEFT 0.7.0
- Transformers 4.37.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.16.1
- Tokenizers 0.15.0
|