intfloat commited on
Commit
a74447e
1 Parent(s): f03e79c

delete mteb_metadata.md

Browse files
Files changed (1) hide show
  1. mteb_metadata.md +0 -2599
mteb_metadata.md DELETED
@@ -1,2599 +0,0 @@
1
- ---
2
- tags:
3
- - mteb
4
- model-index:
5
- - name: mteb_metrics
6
- results:
7
- - task:
8
- type: Classification
9
- dataset:
10
- type: mteb/amazon_counterfactual
11
- name: MTEB AmazonCounterfactualClassification (en)
12
- config: en
13
- split: test
14
- revision: e8379541af4e31359cca9fbcf4b00f2671dba205
15
- metrics:
16
- - type: accuracy
17
- value: 76.22388059701493
18
- - type: ap
19
- value: 40.27466219523129
20
- - type: f1
21
- value: 70.60533006025108
22
- - task:
23
- type: Classification
24
- dataset:
25
- type: mteb/amazon_polarity
26
- name: MTEB AmazonPolarityClassification
27
- config: default
28
- split: test
29
- revision: e2d317d38cd51312af73b3d32a06d1a08b442046
30
- metrics:
31
- - type: accuracy
32
- value: 87.525775
33
- - type: ap
34
- value: 83.51063993897611
35
- - type: f1
36
- value: 87.49342736805572
37
- - task:
38
- type: Classification
39
- dataset:
40
- type: mteb/amazon_reviews_multi
41
- name: MTEB AmazonReviewsClassification (en)
42
- config: en
43
- split: test
44
- revision: 1399c76144fd37290681b995c656ef9b2e06e26d
45
- metrics:
46
- - type: accuracy
47
- value: 42.611999999999995
48
- - type: f1
49
- value: 42.05088045932892
50
- - task:
51
- type: Retrieval
52
- dataset:
53
- type: arguana
54
- name: MTEB ArguAna
55
- config: default
56
- split: test
57
- revision: None
58
- metrics:
59
- - type: map_at_1
60
- value: 23.826
61
- - type: map_at_10
62
- value: 38.269
63
- - type: map_at_100
64
- value: 39.322
65
- - type: map_at_1000
66
- value: 39.344
67
- - type: map_at_3
68
- value: 33.428000000000004
69
- - type: map_at_5
70
- value: 36.063
71
- - type: mrr_at_1
72
- value: 24.253
73
- - type: mrr_at_10
74
- value: 38.425
75
- - type: mrr_at_100
76
- value: 39.478
77
- - type: mrr_at_1000
78
- value: 39.5
79
- - type: mrr_at_3
80
- value: 33.606
81
- - type: mrr_at_5
82
- value: 36.195
83
- - type: ndcg_at_1
84
- value: 23.826
85
- - type: ndcg_at_10
86
- value: 46.693
87
- - type: ndcg_at_100
88
- value: 51.469
89
- - type: ndcg_at_1000
90
- value: 52.002
91
- - type: ndcg_at_3
92
- value: 36.603
93
- - type: ndcg_at_5
94
- value: 41.365
95
- - type: precision_at_1
96
- value: 23.826
97
- - type: precision_at_10
98
- value: 7.383000000000001
99
- - type: precision_at_100
100
- value: 0.9530000000000001
101
- - type: precision_at_1000
102
- value: 0.099
103
- - type: precision_at_3
104
- value: 15.268
105
- - type: precision_at_5
106
- value: 11.479000000000001
107
- - type: recall_at_1
108
- value: 23.826
109
- - type: recall_at_10
110
- value: 73.82600000000001
111
- - type: recall_at_100
112
- value: 95.306
113
- - type: recall_at_1000
114
- value: 99.431
115
- - type: recall_at_3
116
- value: 45.804
117
- - type: recall_at_5
118
- value: 57.397
119
- - task:
120
- type: Clustering
121
- dataset:
122
- type: mteb/arxiv-clustering-p2p
123
- name: MTEB ArxivClusteringP2P
124
- config: default
125
- split: test
126
- revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
127
- metrics:
128
- - type: v_measure
129
- value: 44.13995374767436
130
- - task:
131
- type: Clustering
132
- dataset:
133
- type: mteb/arxiv-clustering-s2s
134
- name: MTEB ArxivClusteringS2S
135
- config: default
136
- split: test
137
- revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
138
- metrics:
139
- - type: v_measure
140
- value: 37.13950072624313
141
- - task:
142
- type: Reranking
143
- dataset:
144
- type: mteb/askubuntudupquestions-reranking
145
- name: MTEB AskUbuntuDupQuestions
146
- config: default
147
- split: test
148
- revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
149
- metrics:
150
- - type: map
151
- value: 59.35843292105327
152
- - type: mrr
153
- value: 73.72312359846987
154
- - task:
155
- type: STS
156
- dataset:
157
- type: mteb/biosses-sts
158
- name: MTEB BIOSSES
159
- config: default
160
- split: test
161
- revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
162
- metrics:
163
- - type: cos_sim_pearson
164
- value: 84.55140418324174
165
- - type: cos_sim_spearman
166
- value: 84.21637675860022
167
- - type: euclidean_pearson
168
- value: 81.26069614610006
169
- - type: euclidean_spearman
170
- value: 83.25069210421785
171
- - type: manhattan_pearson
172
- value: 80.17441422581014
173
- - type: manhattan_spearman
174
- value: 81.87596198487877
175
- - task:
176
- type: Classification
177
- dataset:
178
- type: mteb/banking77
179
- name: MTEB Banking77Classification
180
- config: default
181
- split: test
182
- revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
183
- metrics:
184
- - type: accuracy
185
- value: 81.87337662337661
186
- - type: f1
187
- value: 81.76647866926402
188
- - task:
189
- type: Clustering
190
- dataset:
191
- type: mteb/biorxiv-clustering-p2p
192
- name: MTEB BiorxivClusteringP2P
193
- config: default
194
- split: test
195
- revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
196
- metrics:
197
- - type: v_measure
198
- value: 35.80600542614507
199
- - task:
200
- type: Clustering
201
- dataset:
202
- type: mteb/biorxiv-clustering-s2s
203
- name: MTEB BiorxivClusteringS2S
204
- config: default
205
- split: test
206
- revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
207
- metrics:
208
- - type: v_measure
209
- value: 31.86321613256603
210
- - task:
211
- type: Retrieval
212
- dataset:
213
- type: BeIR/cqadupstack
214
- name: MTEB CQADupstackAndroidRetrieval
215
- config: default
216
- split: test
217
- revision: None
218
- metrics:
219
- - type: map_at_1
220
- value: 32.054
221
- - type: map_at_10
222
- value: 40.699999999999996
223
- - type: map_at_100
224
- value: 41.818
225
- - type: map_at_1000
226
- value: 41.959999999999994
227
- - type: map_at_3
228
- value: 37.742
229
- - type: map_at_5
230
- value: 39.427
231
- - type: mrr_at_1
232
- value: 38.769999999999996
233
- - type: mrr_at_10
234
- value: 46.150000000000006
235
- - type: mrr_at_100
236
- value: 46.865
237
- - type: mrr_at_1000
238
- value: 46.925
239
- - type: mrr_at_3
240
- value: 43.705
241
- - type: mrr_at_5
242
- value: 45.214999999999996
243
- - type: ndcg_at_1
244
- value: 38.769999999999996
245
- - type: ndcg_at_10
246
- value: 45.778
247
- - type: ndcg_at_100
248
- value: 50.38
249
- - type: ndcg_at_1000
250
- value: 52.922999999999995
251
- - type: ndcg_at_3
252
- value: 41.597
253
- - type: ndcg_at_5
254
- value: 43.631
255
- - type: precision_at_1
256
- value: 38.769999999999996
257
- - type: precision_at_10
258
- value: 8.269
259
- - type: precision_at_100
260
- value: 1.278
261
- - type: precision_at_1000
262
- value: 0.178
263
- - type: precision_at_3
264
- value: 19.266
265
- - type: precision_at_5
266
- value: 13.705
267
- - type: recall_at_1
268
- value: 32.054
269
- - type: recall_at_10
270
- value: 54.947
271
- - type: recall_at_100
272
- value: 74.79599999999999
273
- - type: recall_at_1000
274
- value: 91.40899999999999
275
- - type: recall_at_3
276
- value: 42.431000000000004
277
- - type: recall_at_5
278
- value: 48.519
279
- - task:
280
- type: Retrieval
281
- dataset:
282
- type: BeIR/cqadupstack
283
- name: MTEB CQADupstackEnglishRetrieval
284
- config: default
285
- split: test
286
- revision: None
287
- metrics:
288
- - type: map_at_1
289
- value: 29.035
290
- - type: map_at_10
291
- value: 38.007000000000005
292
- - type: map_at_100
293
- value: 39.125
294
- - type: map_at_1000
295
- value: 39.251999999999995
296
- - type: map_at_3
297
- value: 35.77
298
- - type: map_at_5
299
- value: 37.057
300
- - type: mrr_at_1
301
- value: 36.497
302
- - type: mrr_at_10
303
- value: 44.077
304
- - type: mrr_at_100
305
- value: 44.743
306
- - type: mrr_at_1000
307
- value: 44.79
308
- - type: mrr_at_3
309
- value: 42.123
310
- - type: mrr_at_5
311
- value: 43.308
312
- - type: ndcg_at_1
313
- value: 36.497
314
- - type: ndcg_at_10
315
- value: 42.986000000000004
316
- - type: ndcg_at_100
317
- value: 47.323
318
- - type: ndcg_at_1000
319
- value: 49.624
320
- - type: ndcg_at_3
321
- value: 39.805
322
- - type: ndcg_at_5
323
- value: 41.286
324
- - type: precision_at_1
325
- value: 36.497
326
- - type: precision_at_10
327
- value: 7.8340000000000005
328
- - type: precision_at_100
329
- value: 1.269
330
- - type: precision_at_1000
331
- value: 0.178
332
- - type: precision_at_3
333
- value: 19.023
334
- - type: precision_at_5
335
- value: 13.248
336
- - type: recall_at_1
337
- value: 29.035
338
- - type: recall_at_10
339
- value: 51.06
340
- - type: recall_at_100
341
- value: 69.64099999999999
342
- - type: recall_at_1000
343
- value: 84.49
344
- - type: recall_at_3
345
- value: 41.333999999999996
346
- - type: recall_at_5
347
- value: 45.663
348
- - task:
349
- type: Retrieval
350
- dataset:
351
- type: BeIR/cqadupstack
352
- name: MTEB CQADupstackGamingRetrieval
353
- config: default
354
- split: test
355
- revision: None
356
- metrics:
357
- - type: map_at_1
358
- value: 37.239
359
- - type: map_at_10
360
- value: 47.873
361
- - type: map_at_100
362
- value: 48.842999999999996
363
- - type: map_at_1000
364
- value: 48.913000000000004
365
- - type: map_at_3
366
- value: 45.050000000000004
367
- - type: map_at_5
368
- value: 46.498
369
- - type: mrr_at_1
370
- value: 42.508
371
- - type: mrr_at_10
372
- value: 51.44
373
- - type: mrr_at_100
374
- value: 52.087
375
- - type: mrr_at_1000
376
- value: 52.129999999999995
377
- - type: mrr_at_3
378
- value: 49.164
379
- - type: mrr_at_5
380
- value: 50.343
381
- - type: ndcg_at_1
382
- value: 42.508
383
- - type: ndcg_at_10
384
- value: 53.31399999999999
385
- - type: ndcg_at_100
386
- value: 57.245000000000005
387
- - type: ndcg_at_1000
388
- value: 58.794000000000004
389
- - type: ndcg_at_3
390
- value: 48.295
391
- - type: ndcg_at_5
392
- value: 50.415
393
- - type: precision_at_1
394
- value: 42.508
395
- - type: precision_at_10
396
- value: 8.458
397
- - type: precision_at_100
398
- value: 1.133
399
- - type: precision_at_1000
400
- value: 0.132
401
- - type: precision_at_3
402
- value: 21.191
403
- - type: precision_at_5
404
- value: 14.307
405
- - type: recall_at_1
406
- value: 37.239
407
- - type: recall_at_10
408
- value: 65.99000000000001
409
- - type: recall_at_100
410
- value: 82.99499999999999
411
- - type: recall_at_1000
412
- value: 94.128
413
- - type: recall_at_3
414
- value: 52.382
415
- - type: recall_at_5
416
- value: 57.648999999999994
417
- - task:
418
- type: Retrieval
419
- dataset:
420
- type: BeIR/cqadupstack
421
- name: MTEB CQADupstackGisRetrieval
422
- config: default
423
- split: test
424
- revision: None
425
- metrics:
426
- - type: map_at_1
427
- value: 23.039
428
- - type: map_at_10
429
- value: 29.694
430
- - type: map_at_100
431
- value: 30.587999999999997
432
- - type: map_at_1000
433
- value: 30.692999999999998
434
- - type: map_at_3
435
- value: 27.708
436
- - type: map_at_5
437
- value: 28.774
438
- - type: mrr_at_1
439
- value: 24.633
440
- - type: mrr_at_10
441
- value: 31.478
442
- - type: mrr_at_100
443
- value: 32.299
444
- - type: mrr_at_1000
445
- value: 32.381
446
- - type: mrr_at_3
447
- value: 29.435
448
- - type: mrr_at_5
449
- value: 30.446
450
- - type: ndcg_at_1
451
- value: 24.633
452
- - type: ndcg_at_10
453
- value: 33.697
454
- - type: ndcg_at_100
455
- value: 38.080000000000005
456
- - type: ndcg_at_1000
457
- value: 40.812
458
- - type: ndcg_at_3
459
- value: 29.654000000000003
460
- - type: ndcg_at_5
461
- value: 31.474000000000004
462
- - type: precision_at_1
463
- value: 24.633
464
- - type: precision_at_10
465
- value: 5.0729999999999995
466
- - type: precision_at_100
467
- value: 0.753
468
- - type: precision_at_1000
469
- value: 0.10300000000000001
470
- - type: precision_at_3
471
- value: 12.279
472
- - type: precision_at_5
473
- value: 8.452
474
- - type: recall_at_1
475
- value: 23.039
476
- - type: recall_at_10
477
- value: 44.275999999999996
478
- - type: recall_at_100
479
- value: 64.4
480
- - type: recall_at_1000
481
- value: 85.135
482
- - type: recall_at_3
483
- value: 33.394
484
- - type: recall_at_5
485
- value: 37.687
486
- - task:
487
- type: Retrieval
488
- dataset:
489
- type: BeIR/cqadupstack
490
- name: MTEB CQADupstackMathematicaRetrieval
491
- config: default
492
- split: test
493
- revision: None
494
- metrics:
495
- - type: map_at_1
496
- value: 13.594999999999999
497
- - type: map_at_10
498
- value: 19.933999999999997
499
- - type: map_at_100
500
- value: 20.966
501
- - type: map_at_1000
502
- value: 21.087
503
- - type: map_at_3
504
- value: 17.749000000000002
505
- - type: map_at_5
506
- value: 19.156000000000002
507
- - type: mrr_at_1
508
- value: 17.662
509
- - type: mrr_at_10
510
- value: 24.407
511
- - type: mrr_at_100
512
- value: 25.385
513
- - type: mrr_at_1000
514
- value: 25.465
515
- - type: mrr_at_3
516
- value: 22.056
517
- - type: mrr_at_5
518
- value: 23.630000000000003
519
- - type: ndcg_at_1
520
- value: 17.662
521
- - type: ndcg_at_10
522
- value: 24.391
523
- - type: ndcg_at_100
524
- value: 29.681
525
- - type: ndcg_at_1000
526
- value: 32.923
527
- - type: ndcg_at_3
528
- value: 20.271
529
- - type: ndcg_at_5
530
- value: 22.621
531
- - type: precision_at_1
532
- value: 17.662
533
- - type: precision_at_10
534
- value: 4.44
535
- - type: precision_at_100
536
- value: 0.8200000000000001
537
- - type: precision_at_1000
538
- value: 0.125
539
- - type: precision_at_3
540
- value: 9.577
541
- - type: precision_at_5
542
- value: 7.313
543
- - type: recall_at_1
544
- value: 13.594999999999999
545
- - type: recall_at_10
546
- value: 33.976
547
- - type: recall_at_100
548
- value: 57.43000000000001
549
- - type: recall_at_1000
550
- value: 80.958
551
- - type: recall_at_3
552
- value: 22.897000000000002
553
- - type: recall_at_5
554
- value: 28.714000000000002
555
- - task:
556
- type: Retrieval
557
- dataset:
558
- type: BeIR/cqadupstack
559
- name: MTEB CQADupstackPhysicsRetrieval
560
- config: default
561
- split: test
562
- revision: None
563
- metrics:
564
- - type: map_at_1
565
- value: 26.683
566
- - type: map_at_10
567
- value: 35.068
568
- - type: map_at_100
569
- value: 36.311
570
- - type: map_at_1000
571
- value: 36.436
572
- - type: map_at_3
573
- value: 32.371
574
- - type: map_at_5
575
- value: 33.761
576
- - type: mrr_at_1
577
- value: 32.435
578
- - type: mrr_at_10
579
- value: 40.721000000000004
580
- - type: mrr_at_100
581
- value: 41.535
582
- - type: mrr_at_1000
583
- value: 41.593
584
- - type: mrr_at_3
585
- value: 38.401999999999994
586
- - type: mrr_at_5
587
- value: 39.567
588
- - type: ndcg_at_1
589
- value: 32.435
590
- - type: ndcg_at_10
591
- value: 40.538000000000004
592
- - type: ndcg_at_100
593
- value: 45.963
594
- - type: ndcg_at_1000
595
- value: 48.400999999999996
596
- - type: ndcg_at_3
597
- value: 36.048
598
- - type: ndcg_at_5
599
- value: 37.899
600
- - type: precision_at_1
601
- value: 32.435
602
- - type: precision_at_10
603
- value: 7.1129999999999995
604
- - type: precision_at_100
605
- value: 1.162
606
- - type: precision_at_1000
607
- value: 0.156
608
- - type: precision_at_3
609
- value: 16.683
610
- - type: precision_at_5
611
- value: 11.684
612
- - type: recall_at_1
613
- value: 26.683
614
- - type: recall_at_10
615
- value: 51.517
616
- - type: recall_at_100
617
- value: 74.553
618
- - type: recall_at_1000
619
- value: 90.649
620
- - type: recall_at_3
621
- value: 38.495000000000005
622
- - type: recall_at_5
623
- value: 43.495
624
- - task:
625
- type: Retrieval
626
- dataset:
627
- type: BeIR/cqadupstack
628
- name: MTEB CQADupstackProgrammersRetrieval
629
- config: default
630
- split: test
631
- revision: None
632
- metrics:
633
- - type: map_at_1
634
- value: 24.186
635
- - type: map_at_10
636
- value: 31.972
637
- - type: map_at_100
638
- value: 33.117000000000004
639
- - type: map_at_1000
640
- value: 33.243
641
- - type: map_at_3
642
- value: 29.423
643
- - type: map_at_5
644
- value: 30.847
645
- - type: mrr_at_1
646
- value: 29.794999999999998
647
- - type: mrr_at_10
648
- value: 36.767
649
- - type: mrr_at_100
650
- value: 37.645
651
- - type: mrr_at_1000
652
- value: 37.716
653
- - type: mrr_at_3
654
- value: 34.513
655
- - type: mrr_at_5
656
- value: 35.791000000000004
657
- - type: ndcg_at_1
658
- value: 29.794999999999998
659
- - type: ndcg_at_10
660
- value: 36.786
661
- - type: ndcg_at_100
662
- value: 41.94
663
- - type: ndcg_at_1000
664
- value: 44.830999999999996
665
- - type: ndcg_at_3
666
- value: 32.504
667
- - type: ndcg_at_5
668
- value: 34.404
669
- - type: precision_at_1
670
- value: 29.794999999999998
671
- - type: precision_at_10
672
- value: 6.518
673
- - type: precision_at_100
674
- value: 1.0659999999999998
675
- - type: precision_at_1000
676
- value: 0.149
677
- - type: precision_at_3
678
- value: 15.296999999999999
679
- - type: precision_at_5
680
- value: 10.731
681
- - type: recall_at_1
682
- value: 24.186
683
- - type: recall_at_10
684
- value: 46.617
685
- - type: recall_at_100
686
- value: 68.75
687
- - type: recall_at_1000
688
- value: 88.864
689
- - type: recall_at_3
690
- value: 34.199
691
- - type: recall_at_5
692
- value: 39.462
693
- - task:
694
- type: Retrieval
695
- dataset:
696
- type: BeIR/cqadupstack
697
- name: MTEB CQADupstackRetrieval
698
- config: default
699
- split: test
700
- revision: None
701
- metrics:
702
- - type: map_at_1
703
- value: 24.22083333333333
704
- - type: map_at_10
705
- value: 31.606666666666662
706
- - type: map_at_100
707
- value: 32.6195
708
- - type: map_at_1000
709
- value: 32.739999999999995
710
- - type: map_at_3
711
- value: 29.37825
712
- - type: map_at_5
713
- value: 30.596083333333336
714
- - type: mrr_at_1
715
- value: 28.607916666666668
716
- - type: mrr_at_10
717
- value: 35.54591666666666
718
- - type: mrr_at_100
719
- value: 36.33683333333333
720
- - type: mrr_at_1000
721
- value: 36.40624999999999
722
- - type: mrr_at_3
723
- value: 33.526250000000005
724
- - type: mrr_at_5
725
- value: 34.6605
726
- - type: ndcg_at_1
727
- value: 28.607916666666668
728
- - type: ndcg_at_10
729
- value: 36.07966666666667
730
- - type: ndcg_at_100
731
- value: 40.73308333333333
732
- - type: ndcg_at_1000
733
- value: 43.40666666666666
734
- - type: ndcg_at_3
735
- value: 32.23525
736
- - type: ndcg_at_5
737
- value: 33.97083333333333
738
- - type: precision_at_1
739
- value: 28.607916666666668
740
- - type: precision_at_10
741
- value: 6.120333333333335
742
- - type: precision_at_100
743
- value: 0.9921666666666668
744
- - type: precision_at_1000
745
- value: 0.14091666666666666
746
- - type: precision_at_3
747
- value: 14.54975
748
- - type: precision_at_5
749
- value: 10.153166666666667
750
- - type: recall_at_1
751
- value: 24.22083333333333
752
- - type: recall_at_10
753
- value: 45.49183333333334
754
- - type: recall_at_100
755
- value: 66.28133333333332
756
- - type: recall_at_1000
757
- value: 85.16541666666667
758
- - type: recall_at_3
759
- value: 34.6485
760
- - type: recall_at_5
761
- value: 39.229749999999996
762
- - task:
763
- type: Retrieval
764
- dataset:
765
- type: BeIR/cqadupstack
766
- name: MTEB CQADupstackStatsRetrieval
767
- config: default
768
- split: test
769
- revision: None
770
- metrics:
771
- - type: map_at_1
772
- value: 21.842
773
- - type: map_at_10
774
- value: 27.573999999999998
775
- - type: map_at_100
776
- value: 28.410999999999998
777
- - type: map_at_1000
778
- value: 28.502
779
- - type: map_at_3
780
- value: 25.921
781
- - type: map_at_5
782
- value: 26.888
783
- - type: mrr_at_1
784
- value: 24.08
785
- - type: mrr_at_10
786
- value: 29.915999999999997
787
- - type: mrr_at_100
788
- value: 30.669
789
- - type: mrr_at_1000
790
- value: 30.746000000000002
791
- - type: mrr_at_3
792
- value: 28.349000000000004
793
- - type: mrr_at_5
794
- value: 29.246
795
- - type: ndcg_at_1
796
- value: 24.08
797
- - type: ndcg_at_10
798
- value: 30.898999999999997
799
- - type: ndcg_at_100
800
- value: 35.272999999999996
801
- - type: ndcg_at_1000
802
- value: 37.679
803
- - type: ndcg_at_3
804
- value: 27.881
805
- - type: ndcg_at_5
806
- value: 29.432000000000002
807
- - type: precision_at_1
808
- value: 24.08
809
- - type: precision_at_10
810
- value: 4.678
811
- - type: precision_at_100
812
- value: 0.744
813
- - type: precision_at_1000
814
- value: 0.10300000000000001
815
- - type: precision_at_3
816
- value: 11.860999999999999
817
- - type: precision_at_5
818
- value: 8.16
819
- - type: recall_at_1
820
- value: 21.842
821
- - type: recall_at_10
822
- value: 38.66
823
- - type: recall_at_100
824
- value: 59.169000000000004
825
- - type: recall_at_1000
826
- value: 76.887
827
- - type: recall_at_3
828
- value: 30.532999999999998
829
- - type: recall_at_5
830
- value: 34.354
831
- - task:
832
- type: Retrieval
833
- dataset:
834
- type: BeIR/cqadupstack
835
- name: MTEB CQADupstackTexRetrieval
836
- config: default
837
- split: test
838
- revision: None
839
- metrics:
840
- - type: map_at_1
841
- value: 17.145
842
- - type: map_at_10
843
- value: 22.729
844
- - type: map_at_100
845
- value: 23.574
846
- - type: map_at_1000
847
- value: 23.695
848
- - type: map_at_3
849
- value: 21.044
850
- - type: map_at_5
851
- value: 21.981
852
- - type: mrr_at_1
853
- value: 20.888
854
- - type: mrr_at_10
855
- value: 26.529000000000003
856
- - type: mrr_at_100
857
- value: 27.308
858
- - type: mrr_at_1000
859
- value: 27.389000000000003
860
- - type: mrr_at_3
861
- value: 24.868000000000002
862
- - type: mrr_at_5
863
- value: 25.825
864
- - type: ndcg_at_1
865
- value: 20.888
866
- - type: ndcg_at_10
867
- value: 26.457000000000004
868
- - type: ndcg_at_100
869
- value: 30.764000000000003
870
- - type: ndcg_at_1000
871
- value: 33.825
872
- - type: ndcg_at_3
873
- value: 23.483999999999998
874
- - type: ndcg_at_5
875
- value: 24.836
876
- - type: precision_at_1
877
- value: 20.888
878
- - type: precision_at_10
879
- value: 4.58
880
- - type: precision_at_100
881
- value: 0.784
882
- - type: precision_at_1000
883
- value: 0.121
884
- - type: precision_at_3
885
- value: 10.874
886
- - type: precision_at_5
887
- value: 7.639
888
- - type: recall_at_1
889
- value: 17.145
890
- - type: recall_at_10
891
- value: 33.938
892
- - type: recall_at_100
893
- value: 53.672
894
- - type: recall_at_1000
895
- value: 76.023
896
- - type: recall_at_3
897
- value: 25.363000000000003
898
- - type: recall_at_5
899
- value: 29.023
900
- - task:
901
- type: Retrieval
902
- dataset:
903
- type: BeIR/cqadupstack
904
- name: MTEB CQADupstackUnixRetrieval
905
- config: default
906
- split: test
907
- revision: None
908
- metrics:
909
- - type: map_at_1
910
- value: 24.275
911
- - type: map_at_10
912
- value: 30.438
913
- - type: map_at_100
914
- value: 31.489
915
- - type: map_at_1000
916
- value: 31.601000000000003
917
- - type: map_at_3
918
- value: 28.647
919
- - type: map_at_5
920
- value: 29.660999999999998
921
- - type: mrr_at_1
922
- value: 28.077999999999996
923
- - type: mrr_at_10
924
- value: 34.098
925
- - type: mrr_at_100
926
- value: 35.025
927
- - type: mrr_at_1000
928
- value: 35.109
929
- - type: mrr_at_3
930
- value: 32.4
931
- - type: mrr_at_5
932
- value: 33.379999999999995
933
- - type: ndcg_at_1
934
- value: 28.077999999999996
935
- - type: ndcg_at_10
936
- value: 34.271
937
- - type: ndcg_at_100
938
- value: 39.352
939
- - type: ndcg_at_1000
940
- value: 42.199
941
- - type: ndcg_at_3
942
- value: 30.978
943
- - type: ndcg_at_5
944
- value: 32.498
945
- - type: precision_at_1
946
- value: 28.077999999999996
947
- - type: precision_at_10
948
- value: 5.345
949
- - type: precision_at_100
950
- value: 0.897
951
- - type: precision_at_1000
952
- value: 0.125
953
- - type: precision_at_3
954
- value: 13.526
955
- - type: precision_at_5
956
- value: 9.16
957
- - type: recall_at_1
958
- value: 24.275
959
- - type: recall_at_10
960
- value: 42.362
961
- - type: recall_at_100
962
- value: 64.461
963
- - type: recall_at_1000
964
- value: 84.981
965
- - type: recall_at_3
966
- value: 33.249
967
- - type: recall_at_5
968
- value: 37.214999999999996
969
- - task:
970
- type: Retrieval
971
- dataset:
972
- type: BeIR/cqadupstack
973
- name: MTEB CQADupstackWebmastersRetrieval
974
- config: default
975
- split: test
976
- revision: None
977
- metrics:
978
- - type: map_at_1
979
- value: 22.358
980
- - type: map_at_10
981
- value: 30.062
982
- - type: map_at_100
983
- value: 31.189
984
- - type: map_at_1000
985
- value: 31.386999999999997
986
- - type: map_at_3
987
- value: 27.672
988
- - type: map_at_5
989
- value: 28.76
990
- - type: mrr_at_1
991
- value: 26.877000000000002
992
- - type: mrr_at_10
993
- value: 33.948
994
- - type: mrr_at_100
995
- value: 34.746
996
- - type: mrr_at_1000
997
- value: 34.816
998
- - type: mrr_at_3
999
- value: 31.884
1000
- - type: mrr_at_5
1001
- value: 33.001000000000005
1002
- - type: ndcg_at_1
1003
- value: 26.877000000000002
1004
- - type: ndcg_at_10
1005
- value: 34.977000000000004
1006
- - type: ndcg_at_100
1007
- value: 39.753
1008
- - type: ndcg_at_1000
1009
- value: 42.866
1010
- - type: ndcg_at_3
1011
- value: 30.956
1012
- - type: ndcg_at_5
1013
- value: 32.381
1014
- - type: precision_at_1
1015
- value: 26.877000000000002
1016
- - type: precision_at_10
1017
- value: 6.7
1018
- - type: precision_at_100
1019
- value: 1.287
1020
- - type: precision_at_1000
1021
- value: 0.215
1022
- - type: precision_at_3
1023
- value: 14.360999999999999
1024
- - type: precision_at_5
1025
- value: 10.119
1026
- - type: recall_at_1
1027
- value: 22.358
1028
- - type: recall_at_10
1029
- value: 44.183
1030
- - type: recall_at_100
1031
- value: 67.14
1032
- - type: recall_at_1000
1033
- value: 87.53999999999999
1034
- - type: recall_at_3
1035
- value: 32.79
1036
- - type: recall_at_5
1037
- value: 36.829
1038
- - task:
1039
- type: Retrieval
1040
- dataset:
1041
- type: BeIR/cqadupstack
1042
- name: MTEB CQADupstackWordpressRetrieval
1043
- config: default
1044
- split: test
1045
- revision: None
1046
- metrics:
1047
- - type: map_at_1
1048
- value: 19.198999999999998
1049
- - type: map_at_10
1050
- value: 25.229000000000003
1051
- - type: map_at_100
1052
- value: 26.003
1053
- - type: map_at_1000
1054
- value: 26.111
1055
- - type: map_at_3
1056
- value: 23.442
1057
- - type: map_at_5
1058
- value: 24.343
1059
- - type: mrr_at_1
1060
- value: 21.072
1061
- - type: mrr_at_10
1062
- value: 27.02
1063
- - type: mrr_at_100
1064
- value: 27.735
1065
- - type: mrr_at_1000
1066
- value: 27.815
1067
- - type: mrr_at_3
1068
- value: 25.416
1069
- - type: mrr_at_5
1070
- value: 26.173999999999996
1071
- - type: ndcg_at_1
1072
- value: 21.072
1073
- - type: ndcg_at_10
1074
- value: 28.862
1075
- - type: ndcg_at_100
1076
- value: 33.043
1077
- - type: ndcg_at_1000
1078
- value: 36.003
1079
- - type: ndcg_at_3
1080
- value: 25.35
1081
- - type: ndcg_at_5
1082
- value: 26.773000000000003
1083
- - type: precision_at_1
1084
- value: 21.072
1085
- - type: precision_at_10
1086
- value: 4.436
1087
- - type: precision_at_100
1088
- value: 0.713
1089
- - type: precision_at_1000
1090
- value: 0.106
1091
- - type: precision_at_3
1092
- value: 10.659
1093
- - type: precision_at_5
1094
- value: 7.32
1095
- - type: recall_at_1
1096
- value: 19.198999999999998
1097
- - type: recall_at_10
1098
- value: 38.376
1099
- - type: recall_at_100
1100
- value: 58.36900000000001
1101
- - type: recall_at_1000
1102
- value: 80.92099999999999
1103
- - type: recall_at_3
1104
- value: 28.715000000000003
1105
- - type: recall_at_5
1106
- value: 32.147
1107
- - task:
1108
- type: Retrieval
1109
- dataset:
1110
- type: climate-fever
1111
- name: MTEB ClimateFEVER
1112
- config: default
1113
- split: test
1114
- revision: None
1115
- metrics:
1116
- - type: map_at_1
1117
- value: 5.9319999999999995
1118
- - type: map_at_10
1119
- value: 10.483
1120
- - type: map_at_100
1121
- value: 11.97
1122
- - type: map_at_1000
1123
- value: 12.171999999999999
1124
- - type: map_at_3
1125
- value: 8.477
1126
- - type: map_at_5
1127
- value: 9.495000000000001
1128
- - type: mrr_at_1
1129
- value: 13.094
1130
- - type: mrr_at_10
1131
- value: 21.282
1132
- - type: mrr_at_100
1133
- value: 22.556
1134
- - type: mrr_at_1000
1135
- value: 22.628999999999998
1136
- - type: mrr_at_3
1137
- value: 18.218999999999998
1138
- - type: mrr_at_5
1139
- value: 19.900000000000002
1140
- - type: ndcg_at_1
1141
- value: 13.094
1142
- - type: ndcg_at_10
1143
- value: 15.811
1144
- - type: ndcg_at_100
1145
- value: 23.035
1146
- - type: ndcg_at_1000
1147
- value: 27.089999999999996
1148
- - type: ndcg_at_3
1149
- value: 11.905000000000001
1150
- - type: ndcg_at_5
1151
- value: 13.377
1152
- - type: precision_at_1
1153
- value: 13.094
1154
- - type: precision_at_10
1155
- value: 5.225
1156
- - type: precision_at_100
1157
- value: 1.2970000000000002
1158
- - type: precision_at_1000
1159
- value: 0.203
1160
- - type: precision_at_3
1161
- value: 8.86
1162
- - type: precision_at_5
1163
- value: 7.309
1164
- - type: recall_at_1
1165
- value: 5.9319999999999995
1166
- - type: recall_at_10
1167
- value: 20.305
1168
- - type: recall_at_100
1169
- value: 46.314
1170
- - type: recall_at_1000
1171
- value: 69.612
1172
- - type: recall_at_3
1173
- value: 11.21
1174
- - type: recall_at_5
1175
- value: 14.773
1176
- - task:
1177
- type: Retrieval
1178
- dataset:
1179
- type: dbpedia-entity
1180
- name: MTEB DBPedia
1181
- config: default
1182
- split: test
1183
- revision: None
1184
- metrics:
1185
- - type: map_at_1
1186
- value: 8.674
1187
- - type: map_at_10
1188
- value: 17.822
1189
- - type: map_at_100
1190
- value: 24.794
1191
- - type: map_at_1000
1192
- value: 26.214
1193
- - type: map_at_3
1194
- value: 12.690999999999999
1195
- - type: map_at_5
1196
- value: 15.033
1197
- - type: mrr_at_1
1198
- value: 61.75000000000001
1199
- - type: mrr_at_10
1200
- value: 71.58
1201
- - type: mrr_at_100
1202
- value: 71.923
1203
- - type: mrr_at_1000
1204
- value: 71.932
1205
- - type: mrr_at_3
1206
- value: 70.125
1207
- - type: mrr_at_5
1208
- value: 71.038
1209
- - type: ndcg_at_1
1210
- value: 51.0
1211
- - type: ndcg_at_10
1212
- value: 38.637
1213
- - type: ndcg_at_100
1214
- value: 42.398
1215
- - type: ndcg_at_1000
1216
- value: 48.962
1217
- - type: ndcg_at_3
1218
- value: 43.29
1219
- - type: ndcg_at_5
1220
- value: 40.763
1221
- - type: precision_at_1
1222
- value: 61.75000000000001
1223
- - type: precision_at_10
1224
- value: 30.125
1225
- - type: precision_at_100
1226
- value: 9.53
1227
- - type: precision_at_1000
1228
- value: 1.9619999999999997
1229
- - type: precision_at_3
1230
- value: 45.583
1231
- - type: precision_at_5
1232
- value: 38.95
1233
- - type: recall_at_1
1234
- value: 8.674
1235
- - type: recall_at_10
1236
- value: 23.122
1237
- - type: recall_at_100
1238
- value: 47.46
1239
- - type: recall_at_1000
1240
- value: 67.662
1241
- - type: recall_at_3
1242
- value: 13.946
1243
- - type: recall_at_5
1244
- value: 17.768
1245
- - task:
1246
- type: Classification
1247
- dataset:
1248
- type: mteb/emotion
1249
- name: MTEB EmotionClassification
1250
- config: default
1251
- split: test
1252
- revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
1253
- metrics:
1254
- - type: accuracy
1255
- value: 46.86000000000001
1256
- - type: f1
1257
- value: 41.343580452760776
1258
- - task:
1259
- type: Retrieval
1260
- dataset:
1261
- type: fever
1262
- name: MTEB FEVER
1263
- config: default
1264
- split: test
1265
- revision: None
1266
- metrics:
1267
- - type: map_at_1
1268
- value: 36.609
1269
- - type: map_at_10
1270
- value: 47.552
1271
- - type: map_at_100
1272
- value: 48.283
1273
- - type: map_at_1000
1274
- value: 48.321
1275
- - type: map_at_3
1276
- value: 44.869
1277
- - type: map_at_5
1278
- value: 46.509
1279
- - type: mrr_at_1
1280
- value: 39.214
1281
- - type: mrr_at_10
1282
- value: 50.434999999999995
1283
- - type: mrr_at_100
1284
- value: 51.122
1285
- - type: mrr_at_1000
1286
- value: 51.151
1287
- - type: mrr_at_3
1288
- value: 47.735
1289
- - type: mrr_at_5
1290
- value: 49.394
1291
- - type: ndcg_at_1
1292
- value: 39.214
1293
- - type: ndcg_at_10
1294
- value: 53.52400000000001
1295
- - type: ndcg_at_100
1296
- value: 56.997
1297
- - type: ndcg_at_1000
1298
- value: 57.975
1299
- - type: ndcg_at_3
1300
- value: 48.173
1301
- - type: ndcg_at_5
1302
- value: 51.05800000000001
1303
- - type: precision_at_1
1304
- value: 39.214
1305
- - type: precision_at_10
1306
- value: 7.573
1307
- - type: precision_at_100
1308
- value: 0.9440000000000001
1309
- - type: precision_at_1000
1310
- value: 0.104
1311
- - type: precision_at_3
1312
- value: 19.782
1313
- - type: precision_at_5
1314
- value: 13.453000000000001
1315
- - type: recall_at_1
1316
- value: 36.609
1317
- - type: recall_at_10
1318
- value: 69.247
1319
- - type: recall_at_100
1320
- value: 84.99600000000001
1321
- - type: recall_at_1000
1322
- value: 92.40899999999999
1323
- - type: recall_at_3
1324
- value: 54.856
1325
- - type: recall_at_5
1326
- value: 61.797000000000004
1327
- - task:
1328
- type: Retrieval
1329
- dataset:
1330
- type: fiqa
1331
- name: MTEB FiQA2018
1332
- config: default
1333
- split: test
1334
- revision: None
1335
- metrics:
1336
- - type: map_at_1
1337
- value: 16.466
1338
- - type: map_at_10
1339
- value: 27.060000000000002
1340
- - type: map_at_100
1341
- value: 28.511999999999997
1342
- - type: map_at_1000
1343
- value: 28.693
1344
- - type: map_at_3
1345
- value: 22.777
1346
- - type: map_at_5
1347
- value: 25.086000000000002
1348
- - type: mrr_at_1
1349
- value: 32.716
1350
- - type: mrr_at_10
1351
- value: 41.593999999999994
1352
- - type: mrr_at_100
1353
- value: 42.370000000000005
1354
- - type: mrr_at_1000
1355
- value: 42.419000000000004
1356
- - type: mrr_at_3
1357
- value: 38.143
1358
- - type: mrr_at_5
1359
- value: 40.288000000000004
1360
- - type: ndcg_at_1
1361
- value: 32.716
1362
- - type: ndcg_at_10
1363
- value: 34.795
1364
- - type: ndcg_at_100
1365
- value: 40.58
1366
- - type: ndcg_at_1000
1367
- value: 43.993
1368
- - type: ndcg_at_3
1369
- value: 29.573
1370
- - type: ndcg_at_5
1371
- value: 31.583
1372
- - type: precision_at_1
1373
- value: 32.716
1374
- - type: precision_at_10
1375
- value: 9.937999999999999
1376
- - type: precision_at_100
1377
- value: 1.585
1378
- - type: precision_at_1000
1379
- value: 0.22
1380
- - type: precision_at_3
1381
- value: 19.496
1382
- - type: precision_at_5
1383
- value: 15.247
1384
- - type: recall_at_1
1385
- value: 16.466
1386
- - type: recall_at_10
1387
- value: 42.886
1388
- - type: recall_at_100
1389
- value: 64.724
1390
- - type: recall_at_1000
1391
- value: 85.347
1392
- - type: recall_at_3
1393
- value: 26.765
1394
- - type: recall_at_5
1395
- value: 33.603
1396
- - task:
1397
- type: Retrieval
1398
- dataset:
1399
- type: hotpotqa
1400
- name: MTEB HotpotQA
1401
- config: default
1402
- split: test
1403
- revision: None
1404
- metrics:
1405
- - type: map_at_1
1406
- value: 33.025
1407
- - type: map_at_10
1408
- value: 47.343
1409
- - type: map_at_100
1410
- value: 48.207
1411
- - type: map_at_1000
1412
- value: 48.281
1413
- - type: map_at_3
1414
- value: 44.519
1415
- - type: map_at_5
1416
- value: 46.217000000000006
1417
- - type: mrr_at_1
1418
- value: 66.05
1419
- - type: mrr_at_10
1420
- value: 72.94699999999999
1421
- - type: mrr_at_100
1422
- value: 73.289
1423
- - type: mrr_at_1000
1424
- value: 73.30499999999999
1425
- - type: mrr_at_3
1426
- value: 71.686
1427
- - type: mrr_at_5
1428
- value: 72.491
1429
- - type: ndcg_at_1
1430
- value: 66.05
1431
- - type: ndcg_at_10
1432
- value: 56.338
1433
- - type: ndcg_at_100
1434
- value: 59.599999999999994
1435
- - type: ndcg_at_1000
1436
- value: 61.138000000000005
1437
- - type: ndcg_at_3
1438
- value: 52.034000000000006
1439
- - type: ndcg_at_5
1440
- value: 54.352000000000004
1441
- - type: precision_at_1
1442
- value: 66.05
1443
- - type: precision_at_10
1444
- value: 11.693000000000001
1445
- - type: precision_at_100
1446
- value: 1.425
1447
- - type: precision_at_1000
1448
- value: 0.163
1449
- - type: precision_at_3
1450
- value: 32.613
1451
- - type: precision_at_5
1452
- value: 21.401999999999997
1453
- - type: recall_at_1
1454
- value: 33.025
1455
- - type: recall_at_10
1456
- value: 58.467
1457
- - type: recall_at_100
1458
- value: 71.242
1459
- - type: recall_at_1000
1460
- value: 81.452
1461
- - type: recall_at_3
1462
- value: 48.92
1463
- - type: recall_at_5
1464
- value: 53.504
1465
- - task:
1466
- type: Classification
1467
- dataset:
1468
- type: mteb/imdb
1469
- name: MTEB ImdbClassification
1470
- config: default
1471
- split: test
1472
- revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
1473
- metrics:
1474
- - type: accuracy
1475
- value: 75.5492
1476
- - type: ap
1477
- value: 69.42911637216271
1478
- - type: f1
1479
- value: 75.39113704261024
1480
- - task:
1481
- type: Retrieval
1482
- dataset:
1483
- type: msmarco
1484
- name: MTEB MSMARCO
1485
- config: default
1486
- split: dev
1487
- revision: None
1488
- metrics:
1489
- - type: map_at_1
1490
- value: 23.173
1491
- - type: map_at_10
1492
- value: 35.453
1493
- - type: map_at_100
1494
- value: 36.573
1495
- - type: map_at_1000
1496
- value: 36.620999999999995
1497
- - type: map_at_3
1498
- value: 31.655
1499
- - type: map_at_5
1500
- value: 33.823
1501
- - type: mrr_at_1
1502
- value: 23.868000000000002
1503
- - type: mrr_at_10
1504
- value: 36.085
1505
- - type: mrr_at_100
1506
- value: 37.15
1507
- - type: mrr_at_1000
1508
- value: 37.193
1509
- - type: mrr_at_3
1510
- value: 32.376
1511
- - type: mrr_at_5
1512
- value: 34.501
1513
- - type: ndcg_at_1
1514
- value: 23.854
1515
- - type: ndcg_at_10
1516
- value: 42.33
1517
- - type: ndcg_at_100
1518
- value: 47.705999999999996
1519
- - type: ndcg_at_1000
1520
- value: 48.91
1521
- - type: ndcg_at_3
1522
- value: 34.604
1523
- - type: ndcg_at_5
1524
- value: 38.473
1525
- - type: precision_at_1
1526
- value: 23.854
1527
- - type: precision_at_10
1528
- value: 6.639
1529
- - type: precision_at_100
1530
- value: 0.932
1531
- - type: precision_at_1000
1532
- value: 0.104
1533
- - type: precision_at_3
1534
- value: 14.685
1535
- - type: precision_at_5
1536
- value: 10.782
1537
- - type: recall_at_1
1538
- value: 23.173
1539
- - type: recall_at_10
1540
- value: 63.441
1541
- - type: recall_at_100
1542
- value: 88.25
1543
- - type: recall_at_1000
1544
- value: 97.438
1545
- - type: recall_at_3
1546
- value: 42.434
1547
- - type: recall_at_5
1548
- value: 51.745
1549
- - task:
1550
- type: Classification
1551
- dataset:
1552
- type: mteb/mtop_domain
1553
- name: MTEB MTOPDomainClassification (en)
1554
- config: en
1555
- split: test
1556
- revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
1557
- metrics:
1558
- - type: accuracy
1559
- value: 92.05426356589147
1560
- - type: f1
1561
- value: 91.88068588063942
1562
- - task:
1563
- type: Classification
1564
- dataset:
1565
- type: mteb/mtop_intent
1566
- name: MTEB MTOPIntentClassification (en)
1567
- config: en
1568
- split: test
1569
- revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
1570
- metrics:
1571
- - type: accuracy
1572
- value: 73.23985408116735
1573
- - type: f1
1574
- value: 55.858906745287506
1575
- - task:
1576
- type: Classification
1577
- dataset:
1578
- type: mteb/amazon_massive_intent
1579
- name: MTEB MassiveIntentClassification (en)
1580
- config: en
1581
- split: test
1582
- revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
1583
- metrics:
1584
- - type: accuracy
1585
- value: 72.21923335574984
1586
- - type: f1
1587
- value: 70.0174116204253
1588
- - task:
1589
- type: Classification
1590
- dataset:
1591
- type: mteb/amazon_massive_scenario
1592
- name: MTEB MassiveScenarioClassification (en)
1593
- config: en
1594
- split: test
1595
- revision: 7d571f92784cd94a019292a1f45445077d0ef634
1596
- metrics:
1597
- - type: accuracy
1598
- value: 75.77673167451245
1599
- - type: f1
1600
- value: 75.44811354778666
1601
- - task:
1602
- type: Clustering
1603
- dataset:
1604
- type: mteb/medrxiv-clustering-p2p
1605
- name: MTEB MedrxivClusteringP2P
1606
- config: default
1607
- split: test
1608
- revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
1609
- metrics:
1610
- - type: v_measure
1611
- value: 31.340414710728737
1612
- - task:
1613
- type: Clustering
1614
- dataset:
1615
- type: mteb/medrxiv-clustering-s2s
1616
- name: MTEB MedrxivClusteringS2S
1617
- config: default
1618
- split: test
1619
- revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
1620
- metrics:
1621
- - type: v_measure
1622
- value: 28.196676760061578
1623
- - task:
1624
- type: Reranking
1625
- dataset:
1626
- type: mteb/mind_small
1627
- name: MTEB MindSmallReranking
1628
- config: default
1629
- split: test
1630
- revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
1631
- metrics:
1632
- - type: map
1633
- value: 29.564149683482206
1634
- - type: mrr
1635
- value: 30.28995474250486
1636
- - task:
1637
- type: Retrieval
1638
- dataset:
1639
- type: nfcorpus
1640
- name: MTEB NFCorpus
1641
- config: default
1642
- split: test
1643
- revision: None
1644
- metrics:
1645
- - type: map_at_1
1646
- value: 5.93
1647
- - type: map_at_10
1648
- value: 12.828000000000001
1649
- - type: map_at_100
1650
- value: 15.501000000000001
1651
- - type: map_at_1000
1652
- value: 16.791
1653
- - type: map_at_3
1654
- value: 9.727
1655
- - type: map_at_5
1656
- value: 11.318999999999999
1657
- - type: mrr_at_1
1658
- value: 47.678
1659
- - type: mrr_at_10
1660
- value: 55.893
1661
- - type: mrr_at_100
1662
- value: 56.491
1663
- - type: mrr_at_1000
1664
- value: 56.53
1665
- - type: mrr_at_3
1666
- value: 54.386
1667
- - type: mrr_at_5
1668
- value: 55.516
1669
- - type: ndcg_at_1
1670
- value: 45.975
1671
- - type: ndcg_at_10
1672
- value: 33.928999999999995
1673
- - type: ndcg_at_100
1674
- value: 30.164
1675
- - type: ndcg_at_1000
1676
- value: 38.756
1677
- - type: ndcg_at_3
1678
- value: 41.077000000000005
1679
- - type: ndcg_at_5
1680
- value: 38.415
1681
- - type: precision_at_1
1682
- value: 47.678
1683
- - type: precision_at_10
1684
- value: 24.365000000000002
1685
- - type: precision_at_100
1686
- value: 7.344
1687
- - type: precision_at_1000
1688
- value: 1.994
1689
- - type: precision_at_3
1690
- value: 38.184000000000005
1691
- - type: precision_at_5
1692
- value: 33.003
1693
- - type: recall_at_1
1694
- value: 5.93
1695
- - type: recall_at_10
1696
- value: 16.239
1697
- - type: recall_at_100
1698
- value: 28.782999999999998
1699
- - type: recall_at_1000
1700
- value: 60.11
1701
- - type: recall_at_3
1702
- value: 10.700999999999999
1703
- - type: recall_at_5
1704
- value: 13.584
1705
- - task:
1706
- type: Retrieval
1707
- dataset:
1708
- type: nq
1709
- name: MTEB NQ
1710
- config: default
1711
- split: test
1712
- revision: None
1713
- metrics:
1714
- - type: map_at_1
1715
- value: 36.163000000000004
1716
- - type: map_at_10
1717
- value: 51.520999999999994
1718
- - type: map_at_100
1719
- value: 52.449
1720
- - type: map_at_1000
1721
- value: 52.473000000000006
1722
- - type: map_at_3
1723
- value: 47.666
1724
- - type: map_at_5
1725
- value: 50.043000000000006
1726
- - type: mrr_at_1
1727
- value: 40.266999999999996
1728
- - type: mrr_at_10
1729
- value: 54.074
1730
- - type: mrr_at_100
1731
- value: 54.722
1732
- - type: mrr_at_1000
1733
- value: 54.739000000000004
1734
- - type: mrr_at_3
1735
- value: 51.043000000000006
1736
- - type: mrr_at_5
1737
- value: 52.956
1738
- - type: ndcg_at_1
1739
- value: 40.238
1740
- - type: ndcg_at_10
1741
- value: 58.73199999999999
1742
- - type: ndcg_at_100
1743
- value: 62.470000000000006
1744
- - type: ndcg_at_1000
1745
- value: 63.083999999999996
1746
- - type: ndcg_at_3
1747
- value: 51.672
1748
- - type: ndcg_at_5
1749
- value: 55.564
1750
- - type: precision_at_1
1751
- value: 40.238
1752
- - type: precision_at_10
1753
- value: 9.279
1754
- - type: precision_at_100
1755
- value: 1.139
1756
- - type: precision_at_1000
1757
- value: 0.12
1758
- - type: precision_at_3
1759
- value: 23.078000000000003
1760
- - type: precision_at_5
1761
- value: 16.176
1762
- - type: recall_at_1
1763
- value: 36.163000000000004
1764
- - type: recall_at_10
1765
- value: 77.88199999999999
1766
- - type: recall_at_100
1767
- value: 93.83399999999999
1768
- - type: recall_at_1000
1769
- value: 98.465
1770
- - type: recall_at_3
1771
- value: 59.857000000000006
1772
- - type: recall_at_5
1773
- value: 68.73599999999999
1774
- - task:
1775
- type: Retrieval
1776
- dataset:
1777
- type: quora
1778
- name: MTEB QuoraRetrieval
1779
- config: default
1780
- split: test
1781
- revision: None
1782
- metrics:
1783
- - type: map_at_1
1784
- value: 70.344
1785
- - type: map_at_10
1786
- value: 83.907
1787
- - type: map_at_100
1788
- value: 84.536
1789
- - type: map_at_1000
1790
- value: 84.557
1791
- - type: map_at_3
1792
- value: 80.984
1793
- - type: map_at_5
1794
- value: 82.844
1795
- - type: mrr_at_1
1796
- value: 81.02000000000001
1797
- - type: mrr_at_10
1798
- value: 87.158
1799
- - type: mrr_at_100
1800
- value: 87.268
1801
- - type: mrr_at_1000
1802
- value: 87.26899999999999
1803
- - type: mrr_at_3
1804
- value: 86.17
1805
- - type: mrr_at_5
1806
- value: 86.87
1807
- - type: ndcg_at_1
1808
- value: 81.02000000000001
1809
- - type: ndcg_at_10
1810
- value: 87.70700000000001
1811
- - type: ndcg_at_100
1812
- value: 89.004
1813
- - type: ndcg_at_1000
1814
- value: 89.139
1815
- - type: ndcg_at_3
1816
- value: 84.841
1817
- - type: ndcg_at_5
1818
- value: 86.455
1819
- - type: precision_at_1
1820
- value: 81.02000000000001
1821
- - type: precision_at_10
1822
- value: 13.248999999999999
1823
- - type: precision_at_100
1824
- value: 1.516
1825
- - type: precision_at_1000
1826
- value: 0.156
1827
- - type: precision_at_3
1828
- value: 36.963
1829
- - type: precision_at_5
1830
- value: 24.33
1831
- - type: recall_at_1
1832
- value: 70.344
1833
- - type: recall_at_10
1834
- value: 94.75099999999999
1835
- - type: recall_at_100
1836
- value: 99.30499999999999
1837
- - type: recall_at_1000
1838
- value: 99.928
1839
- - type: recall_at_3
1840
- value: 86.506
1841
- - type: recall_at_5
1842
- value: 91.083
1843
- - task:
1844
- type: Clustering
1845
- dataset:
1846
- type: mteb/reddit-clustering
1847
- name: MTEB RedditClustering
1848
- config: default
1849
- split: test
1850
- revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
1851
- metrics:
1852
- - type: v_measure
1853
- value: 42.873718018378305
1854
- - task:
1855
- type: Clustering
1856
- dataset:
1857
- type: mteb/reddit-clustering-p2p
1858
- name: MTEB RedditClusteringP2P
1859
- config: default
1860
- split: test
1861
- revision: 282350215ef01743dc01b456c7f5241fa8937f16
1862
- metrics:
1863
- - type: v_measure
1864
- value: 56.39477366450528
1865
- - task:
1866
- type: Retrieval
1867
- dataset:
1868
- type: scidocs
1869
- name: MTEB SCIDOCS
1870
- config: default
1871
- split: test
1872
- revision: None
1873
- metrics:
1874
- - type: map_at_1
1875
- value: 3.868
1876
- - type: map_at_10
1877
- value: 9.611
1878
- - type: map_at_100
1879
- value: 11.087
1880
- - type: map_at_1000
1881
- value: 11.332
1882
- - type: map_at_3
1883
- value: 6.813
1884
- - type: map_at_5
1885
- value: 8.233
1886
- - type: mrr_at_1
1887
- value: 19.0
1888
- - type: mrr_at_10
1889
- value: 28.457
1890
- - type: mrr_at_100
1891
- value: 29.613
1892
- - type: mrr_at_1000
1893
- value: 29.695
1894
- - type: mrr_at_3
1895
- value: 25.55
1896
- - type: mrr_at_5
1897
- value: 27.29
1898
- - type: ndcg_at_1
1899
- value: 19.0
1900
- - type: ndcg_at_10
1901
- value: 16.419
1902
- - type: ndcg_at_100
1903
- value: 22.817999999999998
1904
- - type: ndcg_at_1000
1905
- value: 27.72
1906
- - type: ndcg_at_3
1907
- value: 15.379000000000001
1908
- - type: ndcg_at_5
1909
- value: 13.645
1910
- - type: precision_at_1
1911
- value: 19.0
1912
- - type: precision_at_10
1913
- value: 8.540000000000001
1914
- - type: precision_at_100
1915
- value: 1.7819999999999998
1916
- - type: precision_at_1000
1917
- value: 0.297
1918
- - type: precision_at_3
1919
- value: 14.267
1920
- - type: precision_at_5
1921
- value: 12.04
1922
- - type: recall_at_1
1923
- value: 3.868
1924
- - type: recall_at_10
1925
- value: 17.288
1926
- - type: recall_at_100
1927
- value: 36.144999999999996
1928
- - type: recall_at_1000
1929
- value: 60.199999999999996
1930
- - type: recall_at_3
1931
- value: 8.688
1932
- - type: recall_at_5
1933
- value: 12.198
1934
- - task:
1935
- type: STS
1936
- dataset:
1937
- type: mteb/sickr-sts
1938
- name: MTEB SICK-R
1939
- config: default
1940
- split: test
1941
- revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
1942
- metrics:
1943
- - type: cos_sim_pearson
1944
- value: 83.96614722598582
1945
- - type: cos_sim_spearman
1946
- value: 78.9003023008781
1947
- - type: euclidean_pearson
1948
- value: 81.01829384436505
1949
- - type: euclidean_spearman
1950
- value: 78.93248416788914
1951
- - type: manhattan_pearson
1952
- value: 81.1665428926402
1953
- - type: manhattan_spearman
1954
- value: 78.93264116287453
1955
- - task:
1956
- type: STS
1957
- dataset:
1958
- type: mteb/sts12-sts
1959
- name: MTEB STS12
1960
- config: default
1961
- split: test
1962
- revision: a0d554a64d88156834ff5ae9920b964011b16384
1963
- metrics:
1964
- - type: cos_sim_pearson
1965
- value: 83.54613363895993
1966
- - type: cos_sim_spearman
1967
- value: 75.1883451602451
1968
- - type: euclidean_pearson
1969
- value: 79.70320886899894
1970
- - type: euclidean_spearman
1971
- value: 74.5917140136796
1972
- - type: manhattan_pearson
1973
- value: 79.82157067185999
1974
- - type: manhattan_spearman
1975
- value: 74.74185720594735
1976
- - task:
1977
- type: STS
1978
- dataset:
1979
- type: mteb/sts13-sts
1980
- name: MTEB STS13
1981
- config: default
1982
- split: test
1983
- revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
1984
- metrics:
1985
- - type: cos_sim_pearson
1986
- value: 81.30430156721782
1987
- - type: cos_sim_spearman
1988
- value: 81.79962989974364
1989
- - type: euclidean_pearson
1990
- value: 80.89058823224924
1991
- - type: euclidean_spearman
1992
- value: 81.35929372984597
1993
- - type: manhattan_pearson
1994
- value: 81.12204370487478
1995
- - type: manhattan_spearman
1996
- value: 81.6248963282232
1997
- - task:
1998
- type: STS
1999
- dataset:
2000
- type: mteb/sts14-sts
2001
- name: MTEB STS14
2002
- config: default
2003
- split: test
2004
- revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
2005
- metrics:
2006
- - type: cos_sim_pearson
2007
- value: 81.13064504403134
2008
- - type: cos_sim_spearman
2009
- value: 78.48371403924872
2010
- - type: euclidean_pearson
2011
- value: 80.16794919665591
2012
- - type: euclidean_spearman
2013
- value: 78.29216082221699
2014
- - type: manhattan_pearson
2015
- value: 80.22308565207301
2016
- - type: manhattan_spearman
2017
- value: 78.37829229948022
2018
- - task:
2019
- type: STS
2020
- dataset:
2021
- type: mteb/sts15-sts
2022
- name: MTEB STS15
2023
- config: default
2024
- split: test
2025
- revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
2026
- metrics:
2027
- - type: cos_sim_pearson
2028
- value: 86.52918899541099
2029
- - type: cos_sim_spearman
2030
- value: 87.49276894673142
2031
- - type: euclidean_pearson
2032
- value: 86.77440570164254
2033
- - type: euclidean_spearman
2034
- value: 87.5753295736756
2035
- - type: manhattan_pearson
2036
- value: 86.86098573892133
2037
- - type: manhattan_spearman
2038
- value: 87.65848591821947
2039
- - task:
2040
- type: STS
2041
- dataset:
2042
- type: mteb/sts16-sts
2043
- name: MTEB STS16
2044
- config: default
2045
- split: test
2046
- revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
2047
- metrics:
2048
- - type: cos_sim_pearson
2049
- value: 82.86805307244882
2050
- - type: cos_sim_spearman
2051
- value: 84.58066253757511
2052
- - type: euclidean_pearson
2053
- value: 84.38377000876991
2054
- - type: euclidean_spearman
2055
- value: 85.1837278784528
2056
- - type: manhattan_pearson
2057
- value: 84.41903291363842
2058
- - type: manhattan_spearman
2059
- value: 85.19023736251052
2060
- - task:
2061
- type: STS
2062
- dataset:
2063
- type: mteb/sts17-crosslingual-sts
2064
- name: MTEB STS17 (en-en)
2065
- config: en-en
2066
- split: test
2067
- revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
2068
- metrics:
2069
- - type: cos_sim_pearson
2070
- value: 86.77218560282436
2071
- - type: cos_sim_spearman
2072
- value: 87.94243515296604
2073
- - type: euclidean_pearson
2074
- value: 88.22800939214864
2075
- - type: euclidean_spearman
2076
- value: 87.91106839439841
2077
- - type: manhattan_pearson
2078
- value: 88.17063269848741
2079
- - type: manhattan_spearman
2080
- value: 87.72751904126062
2081
- - task:
2082
- type: STS
2083
- dataset:
2084
- type: mteb/sts22-crosslingual-sts
2085
- name: MTEB STS22 (en)
2086
- config: en
2087
- split: test
2088
- revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
2089
- metrics:
2090
- - type: cos_sim_pearson
2091
- value: 60.40731554300387
2092
- - type: cos_sim_spearman
2093
- value: 63.76300532966479
2094
- - type: euclidean_pearson
2095
- value: 62.94727878229085
2096
- - type: euclidean_spearman
2097
- value: 63.678039531461216
2098
- - type: manhattan_pearson
2099
- value: 63.00661039863549
2100
- - type: manhattan_spearman
2101
- value: 63.6282591984376
2102
- - task:
2103
- type: STS
2104
- dataset:
2105
- type: mteb/stsbenchmark-sts
2106
- name: MTEB STSBenchmark
2107
- config: default
2108
- split: test
2109
- revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
2110
- metrics:
2111
- - type: cos_sim_pearson
2112
- value: 84.92731569745344
2113
- - type: cos_sim_spearman
2114
- value: 86.36336704300167
2115
- - type: euclidean_pearson
2116
- value: 86.09122224841195
2117
- - type: euclidean_spearman
2118
- value: 86.2116149319238
2119
- - type: manhattan_pearson
2120
- value: 86.07879456717032
2121
- - type: manhattan_spearman
2122
- value: 86.2022069635119
2123
- - task:
2124
- type: Reranking
2125
- dataset:
2126
- type: mteb/scidocs-reranking
2127
- name: MTEB SciDocsRR
2128
- config: default
2129
- split: test
2130
- revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
2131
- metrics:
2132
- - type: map
2133
- value: 79.75976311752326
2134
- - type: mrr
2135
- value: 94.15782837351466
2136
- - task:
2137
- type: Retrieval
2138
- dataset:
2139
- type: scifact
2140
- name: MTEB SciFact
2141
- config: default
2142
- split: test
2143
- revision: None
2144
- metrics:
2145
- - type: map_at_1
2146
- value: 51.193999999999996
2147
- - type: map_at_10
2148
- value: 61.224999999999994
2149
- - type: map_at_100
2150
- value: 62.031000000000006
2151
- - type: map_at_1000
2152
- value: 62.066
2153
- - type: map_at_3
2154
- value: 59.269000000000005
2155
- - type: map_at_5
2156
- value: 60.159
2157
- - type: mrr_at_1
2158
- value: 53.667
2159
- - type: mrr_at_10
2160
- value: 62.74999999999999
2161
- - type: mrr_at_100
2162
- value: 63.39399999999999
2163
- - type: mrr_at_1000
2164
- value: 63.425
2165
- - type: mrr_at_3
2166
- value: 61.389
2167
- - type: mrr_at_5
2168
- value: 61.989000000000004
2169
- - type: ndcg_at_1
2170
- value: 53.667
2171
- - type: ndcg_at_10
2172
- value: 65.596
2173
- - type: ndcg_at_100
2174
- value: 68.906
2175
- - type: ndcg_at_1000
2176
- value: 69.78999999999999
2177
- - type: ndcg_at_3
2178
- value: 62.261
2179
- - type: ndcg_at_5
2180
- value: 63.453
2181
- - type: precision_at_1
2182
- value: 53.667
2183
- - type: precision_at_10
2184
- value: 8.667
2185
- - type: precision_at_100
2186
- value: 1.04
2187
- - type: precision_at_1000
2188
- value: 0.11100000000000002
2189
- - type: precision_at_3
2190
- value: 24.556
2191
- - type: precision_at_5
2192
- value: 15.6
2193
- - type: recall_at_1
2194
- value: 51.193999999999996
2195
- - type: recall_at_10
2196
- value: 77.156
2197
- - type: recall_at_100
2198
- value: 91.43299999999999
2199
- - type: recall_at_1000
2200
- value: 98.333
2201
- - type: recall_at_3
2202
- value: 67.994
2203
- - type: recall_at_5
2204
- value: 71.14399999999999
2205
- - task:
2206
- type: PairClassification
2207
- dataset:
2208
- type: mteb/sprintduplicatequestions-pairclassification
2209
- name: MTEB SprintDuplicateQuestions
2210
- config: default
2211
- split: test
2212
- revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
2213
- metrics:
2214
- - type: cos_sim_accuracy
2215
- value: 99.81485148514851
2216
- - type: cos_sim_ap
2217
- value: 95.28896513388551
2218
- - type: cos_sim_f1
2219
- value: 90.43478260869566
2220
- - type: cos_sim_precision
2221
- value: 92.56544502617801
2222
- - type: cos_sim_recall
2223
- value: 88.4
2224
- - type: dot_accuracy
2225
- value: 99.30594059405941
2226
- - type: dot_ap
2227
- value: 61.6432597455472
2228
- - type: dot_f1
2229
- value: 59.46481665014866
2230
- - type: dot_precision
2231
- value: 58.93909626719057
2232
- - type: dot_recall
2233
- value: 60.0
2234
- - type: euclidean_accuracy
2235
- value: 99.81980198019802
2236
- - type: euclidean_ap
2237
- value: 95.21411049527
2238
- - type: euclidean_f1
2239
- value: 91.06090373280944
2240
- - type: euclidean_precision
2241
- value: 89.47876447876449
2242
- - type: euclidean_recall
2243
- value: 92.7
2244
- - type: manhattan_accuracy
2245
- value: 99.81782178217821
2246
- - type: manhattan_ap
2247
- value: 95.32449994414968
2248
- - type: manhattan_f1
2249
- value: 90.86395233366436
2250
- - type: manhattan_precision
2251
- value: 90.23668639053254
2252
- - type: manhattan_recall
2253
- value: 91.5
2254
- - type: max_accuracy
2255
- value: 99.81980198019802
2256
- - type: max_ap
2257
- value: 95.32449994414968
2258
- - type: max_f1
2259
- value: 91.06090373280944
2260
- - task:
2261
- type: Clustering
2262
- dataset:
2263
- type: mteb/stackexchange-clustering
2264
- name: MTEB StackExchangeClustering
2265
- config: default
2266
- split: test
2267
- revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
2268
- metrics:
2269
- - type: v_measure
2270
- value: 59.08045614613064
2271
- - task:
2272
- type: Clustering
2273
- dataset:
2274
- type: mteb/stackexchange-clustering-p2p
2275
- name: MTEB StackExchangeClusteringP2P
2276
- config: default
2277
- split: test
2278
- revision: 815ca46b2622cec33ccafc3735d572c266efdb44
2279
- metrics:
2280
- - type: v_measure
2281
- value: 30.297802606804748
2282
- - task:
2283
- type: Reranking
2284
- dataset:
2285
- type: mteb/stackoverflowdupquestions-reranking
2286
- name: MTEB StackOverflowDupQuestions
2287
- config: default
2288
- split: test
2289
- revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
2290
- metrics:
2291
- - type: map
2292
- value: 49.12801740706292
2293
- - type: mrr
2294
- value: 50.05592956879722
2295
- - task:
2296
- type: Summarization
2297
- dataset:
2298
- type: mteb/summeval
2299
- name: MTEB SummEval
2300
- config: default
2301
- split: test
2302
- revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
2303
- metrics:
2304
- - type: cos_sim_pearson
2305
- value: 23.380995453661917
2306
- - type: cos_sim_spearman
2307
- value: 24.941761858688917
2308
- - type: dot_pearson
2309
- value: 24.930577961642413
2310
- - type: dot_spearman
2311
- value: 24.804715835064492
2312
- - task:
2313
- type: Retrieval
2314
- dataset:
2315
- type: trec-covid
2316
- name: MTEB TRECCOVID
2317
- config: default
2318
- split: test
2319
- revision: None
2320
- metrics:
2321
- - type: map_at_1
2322
- value: 0.243
2323
- - type: map_at_10
2324
- value: 1.886
2325
- - type: map_at_100
2326
- value: 10.040000000000001
2327
- - type: map_at_1000
2328
- value: 23.768
2329
- - type: map_at_3
2330
- value: 0.674
2331
- - type: map_at_5
2332
- value: 1.079
2333
- - type: mrr_at_1
2334
- value: 88.0
2335
- - type: mrr_at_10
2336
- value: 93.667
2337
- - type: mrr_at_100
2338
- value: 93.667
2339
- - type: mrr_at_1000
2340
- value: 93.667
2341
- - type: mrr_at_3
2342
- value: 93.667
2343
- - type: mrr_at_5
2344
- value: 93.667
2345
- - type: ndcg_at_1
2346
- value: 83.0
2347
- - type: ndcg_at_10
2348
- value: 76.777
2349
- - type: ndcg_at_100
2350
- value: 55.153
2351
- - type: ndcg_at_1000
2352
- value: 47.912
2353
- - type: ndcg_at_3
2354
- value: 81.358
2355
- - type: ndcg_at_5
2356
- value: 80.74799999999999
2357
- - type: precision_at_1
2358
- value: 88.0
2359
- - type: precision_at_10
2360
- value: 80.80000000000001
2361
- - type: precision_at_100
2362
- value: 56.02
2363
- - type: precision_at_1000
2364
- value: 21.51
2365
- - type: precision_at_3
2366
- value: 86.0
2367
- - type: precision_at_5
2368
- value: 86.0
2369
- - type: recall_at_1
2370
- value: 0.243
2371
- - type: recall_at_10
2372
- value: 2.0869999999999997
2373
- - type: recall_at_100
2374
- value: 13.014000000000001
2375
- - type: recall_at_1000
2376
- value: 44.433
2377
- - type: recall_at_3
2378
- value: 0.6910000000000001
2379
- - type: recall_at_5
2380
- value: 1.1440000000000001
2381
- - task:
2382
- type: Retrieval
2383
- dataset:
2384
- type: webis-touche2020
2385
- name: MTEB Touche2020
2386
- config: default
2387
- split: test
2388
- revision: None
2389
- metrics:
2390
- - type: map_at_1
2391
- value: 3.066
2392
- - type: map_at_10
2393
- value: 10.615
2394
- - type: map_at_100
2395
- value: 16.463
2396
- - type: map_at_1000
2397
- value: 17.815
2398
- - type: map_at_3
2399
- value: 5.7860000000000005
2400
- - type: map_at_5
2401
- value: 7.353999999999999
2402
- - type: mrr_at_1
2403
- value: 38.775999999999996
2404
- - type: mrr_at_10
2405
- value: 53.846000000000004
2406
- - type: mrr_at_100
2407
- value: 54.37
2408
- - type: mrr_at_1000
2409
- value: 54.37
2410
- - type: mrr_at_3
2411
- value: 48.980000000000004
2412
- - type: mrr_at_5
2413
- value: 51.735
2414
- - type: ndcg_at_1
2415
- value: 34.694
2416
- - type: ndcg_at_10
2417
- value: 26.811
2418
- - type: ndcg_at_100
2419
- value: 37.342999999999996
2420
- - type: ndcg_at_1000
2421
- value: 47.964
2422
- - type: ndcg_at_3
2423
- value: 30.906
2424
- - type: ndcg_at_5
2425
- value: 27.77
2426
- - type: precision_at_1
2427
- value: 38.775999999999996
2428
- - type: precision_at_10
2429
- value: 23.878
2430
- - type: precision_at_100
2431
- value: 7.632999999999999
2432
- - type: precision_at_1000
2433
- value: 1.469
2434
- - type: precision_at_3
2435
- value: 31.973000000000003
2436
- - type: precision_at_5
2437
- value: 26.939
2438
- - type: recall_at_1
2439
- value: 3.066
2440
- - type: recall_at_10
2441
- value: 17.112
2442
- - type: recall_at_100
2443
- value: 47.723
2444
- - type: recall_at_1000
2445
- value: 79.50500000000001
2446
- - type: recall_at_3
2447
- value: 6.825
2448
- - type: recall_at_5
2449
- value: 9.584
2450
- - task:
2451
- type: Classification
2452
- dataset:
2453
- type: mteb/toxic_conversations_50k
2454
- name: MTEB ToxicConversationsClassification
2455
- config: default
2456
- split: test
2457
- revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
2458
- metrics:
2459
- - type: accuracy
2460
- value: 72.76460000000002
2461
- - type: ap
2462
- value: 14.944240012137053
2463
- - type: f1
2464
- value: 55.89805777266571
2465
- - task:
2466
- type: Classification
2467
- dataset:
2468
- type: mteb/tweet_sentiment_extraction
2469
- name: MTEB TweetSentimentExtractionClassification
2470
- config: default
2471
- split: test
2472
- revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
2473
- metrics:
2474
- - type: accuracy
2475
- value: 63.30503678551217
2476
- - type: f1
2477
- value: 63.57492701921179
2478
- - task:
2479
- type: Clustering
2480
- dataset:
2481
- type: mteb/twentynewsgroups-clustering
2482
- name: MTEB TwentyNewsgroupsClustering
2483
- config: default
2484
- split: test
2485
- revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
2486
- metrics:
2487
- - type: v_measure
2488
- value: 37.51066495006874
2489
- - task:
2490
- type: PairClassification
2491
- dataset:
2492
- type: mteb/twittersemeval2015-pairclassification
2493
- name: MTEB TwitterSemEval2015
2494
- config: default
2495
- split: test
2496
- revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
2497
- metrics:
2498
- - type: cos_sim_accuracy
2499
- value: 86.07021517553794
2500
- - type: cos_sim_ap
2501
- value: 74.15520712370555
2502
- - type: cos_sim_f1
2503
- value: 68.64321608040201
2504
- - type: cos_sim_precision
2505
- value: 65.51558752997602
2506
- - type: cos_sim_recall
2507
- value: 72.0844327176781
2508
- - type: dot_accuracy
2509
- value: 80.23484532395541
2510
- - type: dot_ap
2511
- value: 54.298763810214176
2512
- - type: dot_f1
2513
- value: 53.22254659779924
2514
- - type: dot_precision
2515
- value: 46.32525410476936
2516
- - type: dot_recall
2517
- value: 62.532981530343015
2518
- - type: euclidean_accuracy
2519
- value: 86.04637301066937
2520
- - type: euclidean_ap
2521
- value: 73.85333854233123
2522
- - type: euclidean_f1
2523
- value: 68.77723660599845
2524
- - type: euclidean_precision
2525
- value: 66.87437686939182
2526
- - type: euclidean_recall
2527
- value: 70.79155672823218
2528
- - type: manhattan_accuracy
2529
- value: 85.98676759849795
2530
- - type: manhattan_ap
2531
- value: 73.56016090035973
2532
- - type: manhattan_f1
2533
- value: 68.48878539036647
2534
- - type: manhattan_precision
2535
- value: 63.9505607690547
2536
- - type: manhattan_recall
2537
- value: 73.7203166226913
2538
- - type: max_accuracy
2539
- value: 86.07021517553794
2540
- - type: max_ap
2541
- value: 74.15520712370555
2542
- - type: max_f1
2543
- value: 68.77723660599845
2544
- - task:
2545
- type: PairClassification
2546
- dataset:
2547
- type: mteb/twitterurlcorpus-pairclassification
2548
- name: MTEB TwitterURLCorpus
2549
- config: default
2550
- split: test
2551
- revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
2552
- metrics:
2553
- - type: cos_sim_accuracy
2554
- value: 88.92769821865176
2555
- - type: cos_sim_ap
2556
- value: 85.78879502899773
2557
- - type: cos_sim_f1
2558
- value: 78.14414083990464
2559
- - type: cos_sim_precision
2560
- value: 74.61651607480563
2561
- - type: cos_sim_recall
2562
- value: 82.0218663381583
2563
- - type: dot_accuracy
2564
- value: 84.95750378390964
2565
- - type: dot_ap
2566
- value: 75.80219641857563
2567
- - type: dot_f1
2568
- value: 70.13966179585681
2569
- - type: dot_precision
2570
- value: 65.71140262361251
2571
- - type: dot_recall
2572
- value: 75.20788420080073
2573
- - type: euclidean_accuracy
2574
- value: 88.93546008460433
2575
- - type: euclidean_ap
2576
- value: 85.72056428301667
2577
- - type: euclidean_f1
2578
- value: 78.14387902598124
2579
- - type: euclidean_precision
2580
- value: 75.3376688344172
2581
- - type: euclidean_recall
2582
- value: 81.16723129042192
2583
- - type: manhattan_accuracy
2584
- value: 88.96262661543835
2585
- - type: manhattan_ap
2586
- value: 85.76605136314335
2587
- - type: manhattan_f1
2588
- value: 78.26696165191743
2589
- - type: manhattan_precision
2590
- value: 75.0990659496179
2591
- - type: manhattan_recall
2592
- value: 81.71388974437943
2593
- - type: max_accuracy
2594
- value: 88.96262661543835
2595
- - type: max_ap
2596
- value: 85.78879502899773
2597
- - type: max_f1
2598
- value: 78.26696165191743
2599
- ---