Update README.md
Browse files
README.md
CHANGED
@@ -89,7 +89,7 @@ inputs = processor(text='Find me an everyday image that matches the given captio
|
|
89 |
qry_output = last_pooling(model(**inputs, return_dict=True, output_hidden_states=True).hidden_states[-1], inputs['attention_mask'])
|
90 |
|
91 |
string = '<|image|><|begin_of_text|> Represent the given image.'
|
92 |
-
tgt_inputs = processor(text=string, images=[
|
93 |
tgt_output = last_pooling(model(**tgt_inputs, return_dict=True, output_hidden_states=True).hidden_states[-1], tgt_inputs['attention_mask'])
|
94 |
print(string, '=', compute_similarity(qry_output, tgt_output))
|
95 |
## <|image|><|begin_of_text|> Represent the given image. = tensor([[0.4219]], device='cuda:0', dtype=torch.bfloat16)
|
@@ -97,7 +97,7 @@ print(string, '=', compute_similarity(qry_output, tgt_output))
|
|
97 |
inputs = processor(text='Find me an everyday image that matches the given caption: A cat and a tiger.', return_tensors="pt").to("cuda")
|
98 |
qry_output = last_pooling(model(**inputs, return_dict=True, output_hidden_states=True).hidden_states[-1], inputs['attention_mask'])
|
99 |
string = '<|image|><|begin_of_text|> Represent the given image.'
|
100 |
-
tgt_inputs = processor(text=string, images=[
|
101 |
tgt_output = last_pooling(model(**tgt_inputs, return_dict=True, output_hidden_states=True).hidden_states[-1], tgt_inputs['attention_mask'])
|
102 |
print(string, '=', compute_similarity(qry_output, tgt_output))
|
103 |
## <|image|><|begin_of_text|> Represent the given image. = tensor([[0.3887]], device='cuda:0', dtype=torch.bfloat16)
|
|
|
89 |
qry_output = last_pooling(model(**inputs, return_dict=True, output_hidden_states=True).hidden_states[-1], inputs['attention_mask'])
|
90 |
|
91 |
string = '<|image|><|begin_of_text|> Represent the given image.'
|
92 |
+
tgt_inputs = processor(text=string, images=[image], return_tensors="pt").to("cuda")
|
93 |
tgt_output = last_pooling(model(**tgt_inputs, return_dict=True, output_hidden_states=True).hidden_states[-1], tgt_inputs['attention_mask'])
|
94 |
print(string, '=', compute_similarity(qry_output, tgt_output))
|
95 |
## <|image|><|begin_of_text|> Represent the given image. = tensor([[0.4219]], device='cuda:0', dtype=torch.bfloat16)
|
|
|
97 |
inputs = processor(text='Find me an everyday image that matches the given caption: A cat and a tiger.', return_tensors="pt").to("cuda")
|
98 |
qry_output = last_pooling(model(**inputs, return_dict=True, output_hidden_states=True).hidden_states[-1], inputs['attention_mask'])
|
99 |
string = '<|image|><|begin_of_text|> Represent the given image.'
|
100 |
+
tgt_inputs = processor(text=string, images=[image], return_tensors="pt").to("cuda")
|
101 |
tgt_output = last_pooling(model(**tgt_inputs, return_dict=True, output_hidden_states=True).hidden_states[-1], tgt_inputs['attention_mask'])
|
102 |
print(string, '=', compute_similarity(qry_output, tgt_output))
|
103 |
## <|image|><|begin_of_text|> Represent the given image. = tensor([[0.3887]], device='cuda:0', dtype=torch.bfloat16)
|