--- base_model: - meta-llama/Llama-3.1-8B-Instruct license: llama3.1 language: - gl metrics: - bleu - rouge model-index: - name: Llama-3.1-8B-Instruct-Galician results: - task: type: text-generation dataset: name: alpaca_data_galician type: alpaca_data_galician metrics: - name: bleu type: bleu-4 value: 23.13 - name: rouge type: rouge-l value: 21.84 pipeline_tag: text-generation library_name: transformers widget: - text: "Onde está o concello de Frades?" output: text: Frades é un concello da provincia da Coruña, pertencente á comarca de Ordes. Está situado a 15 quilómetros de Santiago de Compostela. ---

# Llama-3.1-8B-Instruct-Galician a.k.a. Cabuxa 2.0 This model is a continued pretraining version of [meta-llama/Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct) on the [CorpusNós](https://zenodo.org/records/11655219) dataset. ## Model Description - **Developed by:** [UDC Information Retrieval Lab (IRLab)](https://huggingface.co/irlab-udc) - **Language(s) (NLP):** Multilingual, adapted to Galician - **License:** llama3.1 - **Finetuned from model:** [meta-llama/Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct) - **Repository:** [Adapting Large Language Models for Underrepresented Languages](https://gitlab.irlab.org/eliseo.bao/xovetic-llms-underrepresented-languages) - **Paper:** _Coming soon_ ## How to Get Started with the Model ```python import transformers import torch model_id = "irlab-udc/Llama-3.1-8B-Instruct-Galician" pipeline = transformers.pipeline( "text-generation", model=model_id, model_kwargs={"torch_dtype": torch.bfloat16}, device_map="auto", ) messages = [ {"role": "system", "content": "You are a conversational AI that always responds in Galician."}, {"role": "user", "content": "Cal é a principal vantaxe de usar Scrum?"}, ] outputs = pipeline(messages, max_new_tokens=512) print(outputs[0]["generated_text"][-1]["content"]) ``` #### Training Hyperparameters | Parameter | Value | |--------------------------------|--------------------------------------| | learning_rate | 0.0001 | | train_batch_size | 32 | | eval_batch_size | 1 | | seed | 42 | | distributed_type | multi-GPU | | num_devices | 4 | | gradient_accumulation_steps | 2 | | total_train_batch_size | 256 | | total_eval_batch_size | 4 | | optimizer | Adam with betas=(0.9, 0.999), epsilon=1e-08 | | lr_scheduler_type | cosine | | lr_scheduler_warmup_ratio | 0.1 | | num_epochs | 1.0 | #### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.0606 | 0.1682 | 900 | 2.0613 | | 1.9898 | 0.3363 | 1800 | 1.9929 | | 1.9847 | 0.5045 | 2700 | 1.9613 | | 1.9577 | 0.6726 | 3600 | 1.9445 | | 1.9287 | 0.8408 | 4500 | 1.9368 | ## Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** 4x NVIDIA A100 SXM4 80 GB (TDP of 400W) - **Hours used:** 60 - **Cloud Provider:** Private infrastructure - **Carbon Emitted:** 10.37 Kg. CO₂ eq. ## Citation ``` @inproceedings{bao-perez-parapar-xovetic-2024, title={Adapting Large Language Models for Underrepresented Languages}, author={Eliseo Bao and Anxo Pérez and Javier Parapar }, booktitle={VII Congreso XoveTIC: impulsando el talento cient{\'\i}fico}, year={2024}, organization={Universidade da Coru{\~n}a, Servizo de Publicaci{\'o}ns} abstact = {The popularization of Large Language Models (LLMs), especially with the development of conversational systems, makes mandatory to think about facilitating the use of artificial intelligence (AI) to everyone. Most models neglect minority languages, prioritizing widely spoken ones. This exacerbates their underrepresentation in the digital world and negatively affects their speakers. We present two resources aimed at improving natural language processing (NLP) for Galician: (i) a Llama 3.1 instruct model adapted through continuous pre-training on the CorpusNos dataset; and (ii) a Galician version of the Alpaca dataset, used to assess the improvement over the base model. In this evaluation, our model outperformed both the base model and another Galician model in quantitative and qualitative terms} } ```