Text Generation
Transformers
Safetensors
llama
conversational
text-generation-inference
Inference Endpoints
File size: 7,875 Bytes
029d0fd
 
77f2ee9
029d0fd
 
 
77f2ee9
029d0fd
77f2ee9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a699712
 
 
466801d
 
a699712
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee3db82
a699712
 
 
eabeced
 
 
 
 
a699712
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eabeced
a699712
 
 
 
 
 
 
 
 
 
 
 
eabeced
a699712
 
 
 
 
 
 
 
 
77f2ee9
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
---
license: other
library_name: transformers
datasets:
- ise-uiuc/Magicoder-OSS-Instruct-75K
- ise-uiuc/Magicoder-Evol-Instruct-110K
license_name: deepseek
pipeline_tag: text-generation
model-index:
- name: Magicoder-S-DS-6.7B
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 38.31
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ise-uiuc/Magicoder-S-DS-6.7B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 54.48
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ise-uiuc/Magicoder-S-DS-6.7B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 38.71
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ise-uiuc/Magicoder-S-DS-6.7B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 41.0
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ise-uiuc/Magicoder-S-DS-6.7B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 58.41
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ise-uiuc/Magicoder-S-DS-6.7B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 23.43
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ise-uiuc/Magicoder-S-DS-6.7B
      name: Open LLM Leaderboard
---
# 🎩 Magicoder: Source Code Is All You Need

> Refer to our GitHub repo [ise-uiuc/magicoder](https://github.com/ise-uiuc/magicoder/) for an up-to-date introduction to the Magicoder family!

* 🎩**Magicoder** is a model family empowered by 🪄**OSS-Instruct**, a novel approach to enlightening LLMs with open-source code snippets for generating *low-bias* and *high-quality* instruction data for code.
* 🪄**OSS-Instruct** mitigates the *inherent bias* of the LLM-synthesized instruction data by empowering them with *a wealth of open-source references* to produce more diverse, realistic, and controllable data.

![Overview of OSS-Instruct](assets/overview.svg)
![Overview of Result](assets/result.png)

## Model Details

### Model Description

* **Developed by:**
[Yuxiang Wei](https://yuxiang.cs.illinois.edu),
[Zhe Wang](https://github.com/zhewang2001),
[Jiawei Liu](https://jiawei-site.github.io),
[Yifeng Ding](https://yifeng-ding.com),
[Lingming Zhang](https://lingming.cs.illinois.edu)
* **License:** [DeepSeek](https://github.com/deepseek-ai/DeepSeek-Coder/blob/main/LICENSE-MODEL)
* **Finetuned from model:** [deepseek-coder-6.7b-base](https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base)

### Model Sources

* **Repository:** <https://github.com/ise-uiuc/magicoder>
* **Paper:** <https://arxiv.org/abs/2312.02120>
* **Demo (powered by [Gradio](https://www.gradio.app)):**
<https://github.com/ise-uiuc/magicoder/tree/main/demo>

### Training Data

* [Magicoder-OSS-Instruct-75K](https://huggingface.co/datasets/ise-uiuc/Magicoder_oss_instruct_75k): generated through **OSS-Instruct** using `gpt-3.5-turbo-1106` and used to train both Magicoder and Magicoder-S series.
* [Magicoder-Evol-Instruct-110K](https://huggingface.co/datasets/ise-uiuc/Magicoder_evol_instruct_110k): decontaminated and redistributed from [theblackcat102/evol-codealpaca-v1](https://huggingface.co/datasets/theblackcat102/evol-codealpaca-v1), used to further finetune Magicoder series and obtain Magicoder-S models.

## Uses

### Direct Use

Magicoders are designed and best suited for **coding tasks**.

### Out-of-Scope Use

Magicoders may not work well in non-coding tasks.

## Bias, Risks, and Limitations

Magicoders may sometimes make errors, producing misleading contents, or struggle to manage tasks that are not related to coding.

### Recommendations

Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model.

## How to Get Started with the Model

Use the code below to get started with the model. Make sure you installed the [transformers](https://huggingface.co/docs/transformers/index) library.

```python
from transformers import pipeline
import torch

MAGICODER_PROMPT = """You are an exceptionally intelligent coding assistant that consistently delivers accurate and reliable responses to user instructions.

@@ Instruction
{instruction}

@@ Response
"""

instruction = <Your code instruction here>

prompt = MAGICODER_PROMPT.format(instruction=instruction)
generator = pipeline(
    model="ise-uiuc/Magicoder-S-DS-6.7B",
    task="text-generation",
    torch_dtype=torch.bfloat16,
    device_map="auto",
)
result = generator(prompt, max_length=1024, num_return_sequences=1, temperature=0.0)
print(result[0]["generated_text"])
```

## Technical Details

Refer to our GitHub repo: [ise-uiuc/magicoder](https://github.com/ise-uiuc/magicoder/).

## Citation

```bibtex
@misc{magicoder,
    title={Magicoder: Source Code Is All You Need}, 
    author={Yuxiang Wei and Zhe Wang and Jiawei Liu and Yifeng Ding and Lingming Zhang},
    year={2023},
    eprint={2312.02120},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

## Acknowledgements

* [WizardCoder](https://github.com/nlpxucan/WizardLM/tree/main/WizardCoder): Evol-Instruct
* [DeepSeek-Coder](https://github.com/deepseek-ai/DeepSeek-Coder): Base model for Magicoder-DS
* [CodeLlama](https://ai.meta.com/research/publications/code-llama-open-foundation-models-for-code/): Base model for Magicoder-CL
* [StarCoder](https://arxiv.org/abs/2305.06161): Data decontamination

## Important Note

Magicoder models are trained on the synthetic data generated by OpenAI models. Please pay attention to OpenAI's [terms of use](https://openai.com/policies/terms-of-use) when using the models and the datasets. Magicoders will not compete with OpenAI's commercial products.

# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_ise-uiuc__Magicoder-S-DS-6.7B)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |42.39|
|AI2 Reasoning Challenge (25-Shot)|38.31|
|HellaSwag (10-Shot)              |54.48|
|MMLU (5-Shot)                    |38.71|
|TruthfulQA (0-shot)              |41.00|
|Winogrande (5-shot)              |58.41|
|GSM8k (5-shot)                   |23.43|