File size: 7,875 Bytes
029d0fd 77f2ee9 029d0fd 77f2ee9 029d0fd 77f2ee9 a699712 466801d a699712 ee3db82 a699712 eabeced a699712 eabeced a699712 eabeced a699712 77f2ee9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
---
license: other
library_name: transformers
datasets:
- ise-uiuc/Magicoder-OSS-Instruct-75K
- ise-uiuc/Magicoder-Evol-Instruct-110K
license_name: deepseek
pipeline_tag: text-generation
model-index:
- name: Magicoder-S-DS-6.7B
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 38.31
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ise-uiuc/Magicoder-S-DS-6.7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 54.48
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ise-uiuc/Magicoder-S-DS-6.7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 38.71
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ise-uiuc/Magicoder-S-DS-6.7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 41.0
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ise-uiuc/Magicoder-S-DS-6.7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 58.41
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ise-uiuc/Magicoder-S-DS-6.7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 23.43
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ise-uiuc/Magicoder-S-DS-6.7B
name: Open LLM Leaderboard
---
# 🎩 Magicoder: Source Code Is All You Need
> Refer to our GitHub repo [ise-uiuc/magicoder](https://github.com/ise-uiuc/magicoder/) for an up-to-date introduction to the Magicoder family!
* 🎩**Magicoder** is a model family empowered by 🪄**OSS-Instruct**, a novel approach to enlightening LLMs with open-source code snippets for generating *low-bias* and *high-quality* instruction data for code.
* 🪄**OSS-Instruct** mitigates the *inherent bias* of the LLM-synthesized instruction data by empowering them with *a wealth of open-source references* to produce more diverse, realistic, and controllable data.
![Overview of OSS-Instruct](assets/overview.svg)
![Overview of Result](assets/result.png)
## Model Details
### Model Description
* **Developed by:**
[Yuxiang Wei](https://yuxiang.cs.illinois.edu),
[Zhe Wang](https://github.com/zhewang2001),
[Jiawei Liu](https://jiawei-site.github.io),
[Yifeng Ding](https://yifeng-ding.com),
[Lingming Zhang](https://lingming.cs.illinois.edu)
* **License:** [DeepSeek](https://github.com/deepseek-ai/DeepSeek-Coder/blob/main/LICENSE-MODEL)
* **Finetuned from model:** [deepseek-coder-6.7b-base](https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base)
### Model Sources
* **Repository:** <https://github.com/ise-uiuc/magicoder>
* **Paper:** <https://arxiv.org/abs/2312.02120>
* **Demo (powered by [Gradio](https://www.gradio.app)):**
<https://github.com/ise-uiuc/magicoder/tree/main/demo>
### Training Data
* [Magicoder-OSS-Instruct-75K](https://huggingface.co/datasets/ise-uiuc/Magicoder_oss_instruct_75k): generated through **OSS-Instruct** using `gpt-3.5-turbo-1106` and used to train both Magicoder and Magicoder-S series.
* [Magicoder-Evol-Instruct-110K](https://huggingface.co/datasets/ise-uiuc/Magicoder_evol_instruct_110k): decontaminated and redistributed from [theblackcat102/evol-codealpaca-v1](https://huggingface.co/datasets/theblackcat102/evol-codealpaca-v1), used to further finetune Magicoder series and obtain Magicoder-S models.
## Uses
### Direct Use
Magicoders are designed and best suited for **coding tasks**.
### Out-of-Scope Use
Magicoders may not work well in non-coding tasks.
## Bias, Risks, and Limitations
Magicoders may sometimes make errors, producing misleading contents, or struggle to manage tasks that are not related to coding.
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model.
## How to Get Started with the Model
Use the code below to get started with the model. Make sure you installed the [transformers](https://huggingface.co/docs/transformers/index) library.
```python
from transformers import pipeline
import torch
MAGICODER_PROMPT = """You are an exceptionally intelligent coding assistant that consistently delivers accurate and reliable responses to user instructions.
@@ Instruction
{instruction}
@@ Response
"""
instruction = <Your code instruction here>
prompt = MAGICODER_PROMPT.format(instruction=instruction)
generator = pipeline(
model="ise-uiuc/Magicoder-S-DS-6.7B",
task="text-generation",
torch_dtype=torch.bfloat16,
device_map="auto",
)
result = generator(prompt, max_length=1024, num_return_sequences=1, temperature=0.0)
print(result[0]["generated_text"])
```
## Technical Details
Refer to our GitHub repo: [ise-uiuc/magicoder](https://github.com/ise-uiuc/magicoder/).
## Citation
```bibtex
@misc{magicoder,
title={Magicoder: Source Code Is All You Need},
author={Yuxiang Wei and Zhe Wang and Jiawei Liu and Yifeng Ding and Lingming Zhang},
year={2023},
eprint={2312.02120},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
## Acknowledgements
* [WizardCoder](https://github.com/nlpxucan/WizardLM/tree/main/WizardCoder): Evol-Instruct
* [DeepSeek-Coder](https://github.com/deepseek-ai/DeepSeek-Coder): Base model for Magicoder-DS
* [CodeLlama](https://ai.meta.com/research/publications/code-llama-open-foundation-models-for-code/): Base model for Magicoder-CL
* [StarCoder](https://arxiv.org/abs/2305.06161): Data decontamination
## Important Note
Magicoder models are trained on the synthetic data generated by OpenAI models. Please pay attention to OpenAI's [terms of use](https://openai.com/policies/terms-of-use) when using the models and the datasets. Magicoders will not compete with OpenAI's commercial products.
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_ise-uiuc__Magicoder-S-DS-6.7B)
| Metric |Value|
|---------------------------------|----:|
|Avg. |42.39|
|AI2 Reasoning Challenge (25-Shot)|38.31|
|HellaSwag (10-Shot) |54.48|
|MMLU (5-Shot) |38.71|
|TruthfulQA (0-shot) |41.00|
|Winogrande (5-shot) |58.41|
|GSM8k (5-shot) |23.43|
|