--- library_name: transformers license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: headlines_news_sentiment_distil results: [] --- # headlines_news_sentiment_distil This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7839 - Model Preparation Time: 0.0033 - Accuracy: 0.8320 - F1: 0.8319 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:----------------------:|:--------:|:------:| | 0.0132 | 1.0 | 504 | 1.8941 | 0.0033 | 0.8244 | 0.8234 | | 0.0071 | 2.0 | 1008 | 1.7813 | 0.0033 | 0.8244 | 0.8244 | | 0.0085 | 3.0 | 1512 | 1.7540 | 0.0033 | 0.8337 | 0.8337 | | 0.001 | 4.0 | 2016 | 1.7839 | 0.0033 | 0.8320 | 0.8319 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1