--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: kasrahabib/distilbert-base-uncased-finetuned-re_smell_detector results: [] --- # kasrahabib/distilbert-base-uncased-finetuned-re_smell_detector This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0045 - Validation Loss: 0.0243 - Train Precision: 95.87 - Train Recall: 93.28 - Train F1: 94.56 - Train Accuracy: 100.0 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 4614, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Precision | Train Recall | Train F1 | Train Accuracy | Epoch | |:----------:|:---------------:|:---------------:|:------------:|:--------:|:--------------:|:-----:| | 0.0447 | 0.0386 | 92.96 | 88.65 | 90.75 | 99.0 | 0 | | 0.0072 | 0.0289 | 92.36 | 91.65 | 92.0 | 99.0 | 1 | | 0.0045 | 0.0243 | 95.87 | 93.28 | 94.56 | 100.0 | 2 | ### Framework versions - Transformers 4.24.0 - TensorFlow 2.9.2 - Datasets 2.6.1 - Tokenizers 0.13.1