itopcu commited on
Commit
98cf976
·
verified ·
1 Parent(s): 578130e

End of training

Browse files
Files changed (2) hide show
  1. README.md +74 -19
  2. model.safetensors +1 -1
README.md CHANGED
@@ -1,26 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
 
2
- # Kubler-Ross Grief Stage Classification
 
3
 
4
- This model is a fine-tuned version of `dbmdz/bert-base-turkish-128k-cased` on the Kübler-Ross grief stages dataset.
5
 
6
- It classifies text into one of five stages of grief: denial, anger, bargaining, depression, acceptance.
 
 
 
 
 
 
 
 
 
 
7
 
8
- ### Results on the Test Set:
9
 
10
- | Metric | Value |
11
- |-------------------|---------|
12
- | **Accuracy** | 0.5800 |
13
- | **Precision Macro**| 0.4307 |
14
- | **Recall Macro** | 0.3236 |
15
- | **F1 Macro** | 0.3256 |
16
- | **Precision Micro**| 0.5800 |
17
- | **Recall Micro** | 0.5800 |
18
- | **F1 Micro** | 0.5800 |
19
- | **MCC** | 0.3217 |
20
 
21
- ### Training Procedure
22
- - **Learning Rate**: 1e-5
23
- - **Batch Size**: 16
24
- - **Epochs**: 10
25
 
26
- This model was trained on a balanced dataset of texts categorized into the five stages of grief.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: mit
4
+ base_model: dbmdz/bert-base-turkish-128k-cased
5
+ tags:
6
+ - generated_from_trainer
7
+ metrics:
8
+ - accuracy
9
+ model-index:
10
+ - name: kubler-ross
11
+ results: []
12
+ ---
13
 
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
 
17
+ # kubler-ross
18
 
19
+ This model is a fine-tuned version of [dbmdz/bert-base-turkish-128k-cased](https://huggingface.co/dbmdz/bert-base-turkish-128k-cased) on the None dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 1.1257
22
+ - Accuracy: 0.5567
23
+ - Precision Macro: 0.2228
24
+ - Recall Macro: 0.2807
25
+ - F1 Macro: 0.2482
26
+ - Precision Micro: 0.5567
27
+ - Recall Micro: 0.5567
28
+ - F1 Micro: 0.5567
29
+ - Mcc: 0.2773
30
 
31
+ ## Model description
32
 
33
+ More information needed
 
 
 
 
 
 
 
 
 
34
 
35
+ ## Intended uses & limitations
 
 
 
36
 
37
+ More information needed
38
+
39
+ ## Training and evaluation data
40
+
41
+ More information needed
42
+
43
+ ## Training procedure
44
+
45
+ ### Training hyperparameters
46
+
47
+ The following hyperparameters were used during training:
48
+ - learning_rate: 1e-05
49
+ - train_batch_size: 16
50
+ - eval_batch_size: 16
51
+ - seed: 42
52
+ - gradient_accumulation_steps: 2
53
+ - total_train_batch_size: 32
54
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
55
+ - lr_scheduler_type: linear
56
+ - lr_scheduler_warmup_steps: 500
57
+ - num_epochs: 10
58
+ - mixed_precision_training: Native AMP
59
+
60
+ ### Training results
61
+
62
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision Macro | Recall Macro | F1 Macro | Precision Micro | Recall Micro | F1 Micro | Mcc |
63
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------------:|:------------:|:--------:|:---------------:|:------------:|:--------:|:-------:|
64
+ | No log | 1.0 | 44 | 1.6846 | 0.1133 | 0.1320 | 0.2258 | 0.0722 | 0.1133 | 0.1133 | 0.1133 | 0.0093 |
65
+ | 1.7493 | 2.0 | 88 | 1.5106 | 0.3067 | 0.1782 | 0.2023 | 0.1790 | 0.3067 | 0.3067 | 0.3067 | -0.0303 |
66
+ | 1.5805 | 3.0 | 132 | 1.3827 | 0.3867 | 0.1539 | 0.1919 | 0.1657 | 0.3867 | 0.3867 | 0.3867 | -0.0240 |
67
+ | 1.4186 | 4.0 | 176 | 1.2970 | 0.4133 | 0.1660 | 0.2051 | 0.1761 | 0.4133 | 0.4133 | 0.4133 | 0.0183 |
68
+ | 1.3134 | 5.0 | 220 | 1.2696 | 0.4067 | 0.1592 | 0.1985 | 0.1451 | 0.4067 | 0.4067 | 0.4067 | -0.0092 |
69
+ | 1.2891 | 6.0 | 264 | 1.2582 | 0.4567 | 0.1828 | 0.2263 | 0.1933 | 0.4567 | 0.4567 | 0.4567 | 0.1016 |
70
+ | 1.2485 | 7.0 | 308 | 1.2519 | 0.42 | 0.1674 | 0.2106 | 0.1860 | 0.42 | 0.42 | 0.42 | 0.0364 |
71
+ | 1.2244 | 8.0 | 352 | 1.2252 | 0.4933 | 0.1967 | 0.2475 | 0.2187 | 0.4933 | 0.4933 | 0.4933 | 0.1649 |
72
+ | 1.2244 | 9.0 | 396 | 1.2089 | 0.4933 | 0.2054 | 0.2510 | 0.2192 | 0.4933 | 0.4933 | 0.4933 | 0.1844 |
73
+ | 1.1633 | 10.0 | 440 | 1.1257 | 0.5567 | 0.2228 | 0.2807 | 0.2482 | 0.5567 | 0.5567 | 0.5567 | 0.2773 |
74
+
75
+
76
+ ### Framework versions
77
+
78
+ - Transformers 4.44.2
79
+ - Pytorch 2.4.1+cu121
80
+ - Datasets 3.0.1
81
+ - Tokenizers 0.19.1
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:a0dcdd1d60e8afffd25d0c53806ca90fd99af073889e6a64dc9bb5fbf8d5cd09
3
  size 737420300
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6f3427cd1d62d3a7f464ddd4ba3eae8c68f0fc3cd0aa55480707bda1a61991f7
3
  size 737420300