--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - image-classification - generated_from_trainer metrics: - accuracy model-index: - name: finetuned-indian-food results: [] --- # finetuned-indian-food This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the indian_food_images dataset. It achieves the following results on the evaluation set: - Loss: 0.2867 - Accuracy: 0.9267 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 1.0192 | 0.3003 | 100 | 0.9248 | 0.8480 | | 0.635 | 0.6006 | 200 | 0.5917 | 0.8863 | | 0.6523 | 0.9009 | 300 | 0.5134 | 0.8799 | | 0.4247 | 1.2012 | 400 | 0.3983 | 0.9044 | | 0.4393 | 1.5015 | 500 | 0.4119 | 0.8980 | | 0.4631 | 1.8018 | 600 | 0.3752 | 0.9107 | | 0.2992 | 2.1021 | 700 | 0.3469 | 0.9129 | | 0.3 | 2.4024 | 800 | 0.3157 | 0.9203 | | 0.2372 | 2.7027 | 900 | 0.3210 | 0.9192 | | 0.2447 | 3.0030 | 1000 | 0.3140 | 0.9224 | | 0.2209 | 3.3033 | 1100 | 0.3034 | 0.9160 | | 0.2641 | 3.6036 | 1200 | 0.2896 | 0.9277 | | 0.0954 | 3.9039 | 1300 | 0.2867 | 0.9267 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.1+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1