--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2.5-1.5B tags: - axolotl - generated_from_trainer model-index: - name: dd09dcd8-ce56-4831-8c1d-de3ce3ca6f5f results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen2.5-1.5B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 3e3baad8b42dc1fe_train_data.json ds_type: json format: custom path: /workspace/input_data/3e3baad8b42dc1fe_train_data.json type: field_input: C field_instruction: Q field_output: A format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device: cuda early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null gradient_accumulation_steps: 6 gradient_checkpointing: false group_by_length: false hub_model_id: ivangrapher/dd09dcd8-ce56-4831-8c1d-de3ce3ca6f5f hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 70GiB max_steps: 30 micro_batch_size: 2 mlflow_experiment_name: /tmp/3e3baad8b42dc1fe_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: true trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: ae0c2f0c-99da-4e5b-885a-4f2b2b59bd8d wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: ae0c2f0c-99da-4e5b-885a-4f2b2b59bd8d warmup_steps: 10 weight_decay: 0.01 xformers_attention: true ```

# dd09dcd8-ce56-4831-8c1d-de3ce3ca6f5f This model is a fine-tuned version of [Qwen/Qwen2.5-1.5B](https://huggingface.co/Qwen/Qwen2.5-1.5B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7638 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 6 - total_train_batch_size: 12 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 13 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 0.08 | 1 | 2.0923 | | 1.9861 | 0.32 | 4 | 2.0614 | | 2.0359 | 0.64 | 8 | 1.8452 | | 1.6732 | 0.96 | 12 | 1.7638 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1