--- license: cc-by-4.0 language: - gvc metrics: - cer pipeline_tag: automatic-speech-recognition datasets: - ivangtorre/second_americas_nlp_2022 tags: - audio - automatic-speech-recognition - speech - kotiria - xlsr-fine-tuning model-index: - name: Wav2Vec2 XLSR 300M Kotiria Model by M Romero and Ivan G Torre results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Americas NLP 2022 Kotiria type: second_americas_nlp_2022 args: Kotiria metrics: - name: Test CER type: cer value: 36.00 --- This model was finetuned from a Wav2vec2.0 XLS-R model: 300M with the Kotiria train parition of the Americas NLP 2022 dataset. This challenge took place during NeurIPSS 2022. ## Example of usage The model can be used directly (without a language model) as follows: ```python from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC import torch import torchaudio # load model and processor processor = Wav2Vec2Processor.from_pretrained("ivangtorre/wav2vec2-xlsr-300m-kotiria") model = Wav2Vec2ForCTC.from_pretrained("ivangtorre/wav2vec2-xlsr-300m-kotiria") # Pat to wav file pathfile = "/path/to/wavfile" # Load and normalize the file wav, curr_sample_rate = sf.read(pathfile, dtype="float32") feats = torch.from_numpy(wav).float() with torch.no_grad(): feats = F.layer_norm(feats, feats.shape) feats = torch.unsqueeze(feats, 0) logits = model(feats).logits # take argmax and decode predicted_ids = torch.argmax(logits, dim=-1) transcription = processor.batch_decode(predicted_ids) print("HF prediction: ", transcription) ``` This code snipnet shows how to Evaluate the wav2vec2-xlsr-300m-kotiria in [Second Americas NLP 2022 Kotiria dev set](https://huggingface.co/datasets/ivangtorre/second_americas_nlp_2022) ```python from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import torch from jiwer import cer import torch.nn.functional as F from datasets import load_dataset import soundfile as sf americasnlp = load_dataset("ivangtorre/second_americas_nlp_2022", "kotiria", split="dev") kotiria = americasnlp.filter(lambda language: language['subset']=='kotiria') model = Wav2Vec2ForCTC.from_pretrained("ivangtorre/wav2vec2-xlsr-300m-kotiria") processor = Wav2Vec2Processor.from_pretrained("ivangtorre/wav2vec2-xlsr-300m-kotiria") def map_to_pred(batch): wav = batch["audio"][0]["array"] feats = torch.from_numpy(wav).float() feats = F.layer_norm(feats, feats.shape) # Normalization performed during finetuning feats = torch.unsqueeze(feats, 0) logits = model(feats).logits predicted_ids = torch.argmax(logits, dim=-1) batch["transcription"] = processor.batch_decode(predicted_ids) return batch result = kotiria.map(map_to_pred, batched=True, batch_size=1) print("CER:", cer(result["source_processed"], result["transcription"])) ``` ## Citation ```bibtex @article{romero2024asr, title={ASR advancements for indigenous languages: Quechua, Guarani, Bribri, Kotiria, and Wa'ikhana}, author={Romero, Monica and Gomez, Sandra and Torre, Iv{\'a}n G}, journal={arXiv preprint arXiv:2404.08368}, year={2024} } ```