---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:208
- loss:BatchSemiHardTripletLoss
base_model: BAAI/bge-base-en
widget:
- source_sentence: '
Name : Pacific Union Services
Category: Financial Consulting, Subscription Management
Department: Finance
Location: Singapore
Amount: 129.58
Card: Quarterly Financial Account Review
Trip Name: unknown
'
sentences:
- '
Name : Evergreen Solutions
Category: Commercial Cleaning Services
Department: Office Administration
Location: San Francisco, CA
Amount: 623.74
Card: Workplace Hygiene and Equipment Upkeep
Trip Name: unknown
'
- '
Name : TechXperts Global
Category: IT Services, Consulting
Department: IT Operations
Location: Berlin, Germany
Amount: 987.49
Card: Quarterly System Assessment
Trip Name: unknown
'
- '
Name : Thunderbird Academy
Category: Professional Services
Department: HR
Location: Toronto, Canada
Amount: 1250.75
Card: Skills Enhancement Initiative
Trip Name: unknown
'
- source_sentence: '
Name : Gandalf
Category: Financial Services, Consulting
Department: Finance
Location: Singapore
Amount: 457.29
Card: Financial Advisory Services
Trip Name: unknown
'
sentences:
- '
Name : Palace Suites
Category: Hotel Accommodation, Event Outsourcing
Department: Marketing
Location: Amsterdam, NL
Amount: 1278.64
Card: Annual Conference Stay
Trip Name: 2023 Innovation Summit
'
- '
Name : ActiveHealth CoLab
Category: Health Services, Wellness Solutions
Department: HR
Location: Amsterdam, Netherlands
Amount: 745.32
Card: Corporate Wellness Partnership
Trip Name: unknown
'
- '
Name : Harmony Health Retreats
Category: Health & Wellness
Department: HR
Location: Kauai, Hawaii
Amount: 1756.35
Card: Employee Wellness and Motivation Program
Trip Name: unknown
'
- source_sentence: '
Name : FusionLink
Category: Event Management Solutions, Digital Strategy Services
Department: Sales
Location: New York, NY
Amount: 982.75
Card: Product Launch Activation
Trip Name: unknown
'
sentences:
- '
Name : Global Talent Network
Category: HR Consultancy Services, Corporate Event Organizers
Department: HR
Location: Los Angeles, CA
Amount: 1375.65
Card: Leadership Summit Coordination
Trip Name: unknown
'
- '
Name : Syncropolis Solutions
Category: CRM Software, Business Communication Tools
Department: Customer Success
Location: Amsterdam, Netherlands
Amount: 2210.57
Card: Customer Engagement Support
Trip Name: unknown
'
- '
Name : InteractivoPlus
Category: Communication Platforms, Subscription Services
Department: Customer Success
Location: Barcelona, Spain
Amount: 1157.49
Card: Enhanced Communication Channel
Trip Name: unknown
'
- source_sentence: '
Name : E27
Category: Event Management Services, Business Conference Coordination
Department: Sales
Location: Berlin, Germany
Amount: 1225.45
Card: Sales Innovation Fund
Trip Name: unknown
'
sentences:
- '
Name : NetWise Solutions
Category: Data Transfer Services, Digital Infrastructure
Department: Product
Location: Singapore
Amount: 1579.42
Card: Global Network Enhancement
Trip Name: unknown
'
- '
Name : BlueWave Innovations
Category: Renewable Energy Solutions, Infrastructure Management
Department: Office Administration
Location: Miami, FL
Amount: 935.47
Card: Building Energy Optimization
Trip Name: unknown
'
- '
Name : NexusGuard Solutions
Category: Data Protection Tools, IT Support Services
Department: Information Security
Location: New York, USA
Amount: 1957.85
Card: Enterprise Security Revamp
Trip Name: unknown
'
- source_sentence: '
Name : Ricardo Solutions
Category: Digital Display Setup, Trade Show Facilitation
Department: Sales
Location: Barcelona, Spain
Amount: 1349.75
Card: Annual Industry Expo Presence
Trip Name: unknown
'
sentences:
- '
Name : SkillAdvance Academy
Category: Online Learning Platform, Professional Development
Department: Engineering
Location: Austin, TX
Amount: 1875.67
Card: Continuous Improvement Initiative
Trip Name: unknown
'
- '
Name : Urban Essentials Corp.
Category: Furniture Solutions, Workspace Design Services
Department: Office Administration
Location: New York, NY
Amount: 1323.58
Card: Modern Workspace Revamp
Trip Name: unknown
'
- '
Name : Streamline Financial Systems
Category: Financial Management Software, Subscription Analytics
Department: Finance
Location: San Francisco, USA
Amount: 1389.56
Card: Integrated Revenue Solutions
Trip Name: unknown
'
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy
- dot_accuracy
- manhattan_accuracy
- euclidean_accuracy
- max_accuracy
model-index:
- name: SentenceTransformer based on BAAI/bge-base-en
results:
- task:
type: triplet
name: Triplet
dataset:
name: bge base en train
type: bge-base-en-train
metrics:
- type: cosine_accuracy
value: 0.8269230769230769
name: Cosine Accuracy
- type: dot_accuracy
value: 0.17307692307692307
name: Dot Accuracy
- type: manhattan_accuracy
value: 0.8173076923076923
name: Manhattan Accuracy
- type: euclidean_accuracy
value: 0.8269230769230769
name: Euclidean Accuracy
- type: max_accuracy
value: 0.8269230769230769
name: Max Accuracy
- task:
type: triplet
name: Triplet
dataset:
name: bge base en eval
type: bge-base-en-eval
metrics:
- type: cosine_accuracy
value: 0.9393939393939394
name: Cosine Accuracy
- type: dot_accuracy
value: 0.06060606060606061
name: Dot Accuracy
- type: manhattan_accuracy
value: 0.9393939393939394
name: Manhattan Accuracy
- type: euclidean_accuracy
value: 0.9393939393939394
name: Euclidean Accuracy
- type: max_accuracy
value: 0.9393939393939394
name: Max Accuracy
---
# SentenceTransformer based on BAAI/bge-base-en
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en](https://huggingface.co/BAAI/bge-base-en). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-base-en](https://huggingface.co/BAAI/bge-base-en)
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("ivanleomk/finetuned-bge-base-en")
# Run inference
sentences = [
'\nName : Ricardo Solutions\nCategory: Digital Display Setup, Trade Show Facilitation\nDepartment: Sales\nLocation: Barcelona, Spain\nAmount: 1349.75\nCard: Annual Industry Expo Presence\nTrip Name: unknown\n',
'\nName : Streamline Financial Systems\nCategory: Financial Management Software, Subscription Analytics\nDepartment: Finance\nLocation: San Francisco, USA\nAmount: 1389.56\nCard: Integrated Revenue Solutions\nTrip Name: unknown\n',
'\nName : Urban Essentials Corp.\nCategory: Furniture Solutions, Workspace Design Services\nDepartment: Office Administration\nLocation: New York, NY\nAmount: 1323.58\nCard: Modern Workspace Revamp\nTrip Name: unknown\n',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Triplet
* Dataset: `bge-base-en-train`
* Evaluated with [TripletEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
| Metric | Value |
|:-------------------|:-----------|
| cosine_accuracy | 0.8269 |
| dot_accuracy | 0.1731 |
| manhattan_accuracy | 0.8173 |
| euclidean_accuracy | 0.8269 |
| **max_accuracy** | **0.8269** |
#### Triplet
* Dataset: `bge-base-en-eval`
* Evaluated with [TripletEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
| Metric | Value |
|:-------------------|:-----------|
| cosine_accuracy | 0.9394 |
| dot_accuracy | 0.0606 |
| manhattan_accuracy | 0.9394 |
| euclidean_accuracy | 0.9394 |
| **max_accuracy** | **0.9394** |
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 208 training samples
* Columns: sentence
and label
* Approximate statistics based on the first 208 samples:
| | sentence | label |
|:--------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| type | string | int |
| details |
Name : Innovative Patents Co.
Category: Intellectual Property Services, Legal Services
Department: Legal
Location: New York, NY
Amount: 3250.0
Card: Patent Acquisition Fund
Trip Name: unknown
| 0
|
|
Name : Omachi Meitetsu
Category: Transportation Services, Travel Services
Department: Sales
Location: Hakkuba Japan
Amount: 120.0
Card: Quarterly Travel Expenses
Trip Name: unknown
| 1
|
|
Name : InfiniTech Systems
Category: Technical Hardware Management, Software Solutions
Department: IT Operations
Location: New York, USA
Amount: 1099.47
Card: Integrated Support Package
Trip Name: unknown
| 2
|
* Loss: [BatchSemiHardTripletLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#batchsemihardtripletloss)
### Evaluation Dataset
#### Unnamed Dataset
* Size: 52 evaluation samples
* Columns: sentence
and label
* Approximate statistics based on the first 52 samples:
| | sentence | label |
|:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| type | string | int |
| details |
Name : Nimbus Streamline
Category: Cloud Services, Internet Infrastructure
Department: IT Operations
Location: Berlin, Germany
Amount: 1376.49
Card: Distributed Server Management
Trip Name: unknown
| 6
|
|
Name : FusionLink
Category: Event Management Solutions, Digital Strategy Services
Department: Sales
Location: New York, NY
Amount: 982.75
Card: Product Launch Activation
Trip Name: unknown
| 17
|
|
Name : Yue Hua
Category: HR & Employment Services
Department: Engineering
Location: Berlin, Germany
Amount: 3567.45
Card: Talent Acquisition Enhancement
Trip Name: unknown
| 8
|
* Loss: [BatchSemiHardTripletLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#batchsemihardtripletloss)
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 5
- `warmup_ratio`: 0.1
- `batch_sampler`: no_duplicates
#### All Hyperparameters