Update README.md
Browse files
README.md
CHANGED
@@ -14,6 +14,60 @@ language:
|
|
14 |
- sk
|
15 |
- sq
|
16 |
pipeline_tag: token-classification
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
---
|
18 |
## XLM-Roberta-base NER model for slavic languages
|
19 |
|
@@ -28,7 +82,7 @@ We used the following hyper-parameters:
|
|
28 |
* 40 epochs (preliminary runs showed best F1-scores between epochs 15 and 35)
|
29 |
* F1-score for best model selection and training progression.
|
30 |
|
31 |
-
|
32 |
```
|
33 |
{
|
34 |
"xlmrb-sl_hr_sr_bs_mk_sq_cs_bg_pl_ru_sk_uk": {
|
@@ -63,7 +117,7 @@ We used the following hyper-parameters:
|
|
63 |
}
|
64 |
}
|
65 |
```
|
66 |
-
|
67 |
Based on
|
68 |
[Analysis of Transfer Learning for Named Entity Recognition in South-Slavic Languages](https://aclanthology.org/2023.bsnlp-1.13) (Ivačič et al., BSNLP 2023)
|
69 |
|
|
|
14 |
- sk
|
15 |
- sq
|
16 |
pipeline_tag: token-classification
|
17 |
+
model-index:
|
18 |
+
- name: xlmr-ner-slavic
|
19 |
+
results:
|
20 |
+
- task:
|
21 |
+
type: token-classification
|
22 |
+
metrics:
|
23 |
+
- name: Accuracy
|
24 |
+
type: Accuracy
|
25 |
+
value: 98.35
|
26 |
+
- name: F1-score
|
27 |
+
type: F1-score
|
28 |
+
value: 93.16
|
29 |
+
- name: Precision
|
30 |
+
type: Precision
|
31 |
+
value: 92.70
|
32 |
+
- name: Recall
|
33 |
+
type: Recall
|
34 |
+
value: 93.62
|
35 |
+
- name: LOC Precision
|
36 |
+
type: LOC Precision
|
37 |
+
value: 94.10
|
38 |
+
- name: LOC Recall
|
39 |
+
type: LOC Recall
|
40 |
+
value: 95.51
|
41 |
+
- name: LOC F1-score
|
42 |
+
type: LOC F1-score
|
43 |
+
value: 94.80
|
44 |
+
- name: MISC Precision
|
45 |
+
type: MISC Precision
|
46 |
+
value: 85.20
|
47 |
+
- name: MISC Recall
|
48 |
+
type: MISC Recall
|
49 |
+
value: 85.54
|
50 |
+
- name: MISC F1-score
|
51 |
+
type: MISC F1-score
|
52 |
+
value: 85.37
|
53 |
+
- name: ORG Precision
|
54 |
+
type: ORG Precision
|
55 |
+
value: 91.23
|
56 |
+
- name: ORG Recall
|
57 |
+
type: ORG Recall
|
58 |
+
value: 91.52
|
59 |
+
- name: ORG F1-score
|
60 |
+
type: ORG F1-score
|
61 |
+
value: 91.37
|
62 |
+
- name: PER Precision
|
63 |
+
type: PER Precision
|
64 |
+
value: 95.00
|
65 |
+
- name: PER Recall
|
66 |
+
type: PER Recall
|
67 |
+
value: 96.19
|
68 |
+
- name: PER F1-score
|
69 |
+
type: PER F1-score
|
70 |
+
value: 95.59
|
71 |
---
|
72 |
## XLM-Roberta-base NER model for slavic languages
|
73 |
|
|
|
82 |
* 40 epochs (preliminary runs showed best F1-scores between epochs 15 and 35)
|
83 |
* F1-score for best model selection and training progression.
|
84 |
|
85 |
+
<!---
|
86 |
```
|
87 |
{
|
88 |
"xlmrb-sl_hr_sr_bs_mk_sq_cs_bg_pl_ru_sk_uk": {
|
|
|
117 |
}
|
118 |
}
|
119 |
```
|
120 |
+
-->
|
121 |
Based on
|
122 |
[Analysis of Transfer Learning for Named Entity Recognition in South-Slavic Languages](https://aclanthology.org/2023.bsnlp-1.13) (Ivačič et al., BSNLP 2023)
|
123 |
|