--- license: other license_name: hippojabe1.0 license_link: LICENSE base_model: runwayml/stable-diffusion-v1-5 pipeline_tag: text-to-image tags: - art - hippo --- # hippojabe_style_image_generator - Github: [yizhennn/hippojabe-generator](https://github.com/yizhennn/hippojabe-generator) - Docs: [https://medium.com/@izzysde](https://medium.com/@izzysde/只用24張圖複製我妹的畫風-dreambooth-微調stable-diffusion-v1-5-實作教學-3c3318362ebb) # 使用 hippojabe 的風格生成卡通畫風圖片 - **模型名稱**:hippojabe_style_image_generator - **基礎模型**:基於 runwayml/stable-diffusion-v1-5 - **訓練圖像**:[小河馬實用貼圖--手繪風](https://store.line.me/stickershop/product/27243710/zh-Hant?from=sticker) - **微調方法**:使用 [DreamBooth](https://huggingface.co/docs/diffusers/training/dreambooth) 方法進行文本到圖像的微調 - **微調做法**:[只用24張圖複製我妹的畫風 - DreamBooth 微調 Stable Diffusion v1-5 實作教學](https://medium.com/@izzysde/只用24張圖複製我妹的畫風-dreambooth-微調stable-diffusion-v1-5-實作教學-3c3318362ebb) # 模型使用方法: ## 1. 安裝 diffusers, accelerate, cuda版torch ```bash pip install diffusers, accelerate, torch==2.0.1+cu118 torchvision==0.15.2+cu118 torchaudio==2.0.2+cu118 -f https://download.pytorch.org/whl/cu118/torch_stable.html ``` ## 2. 生成圖片 ```python from diffusers import DiffusionPipeline import torch # 加載模型 pipeline = DiffusionPipeline.from_pretrained("izzysde/hippojabe_style_image_generator") # 如果有 GPU,將模型移到 CUDA if torch.cuda.is_available(): pipeline.to("cuda") else: pipeline.to("cpu") # 定義生成圖像的參數 prompt = "show a cute bird in the style of hippojabe" # 用英文寫描述一定要用in the style of hippojabe結尾 num_inference_steps = 100 # 控制生成質量和速度的步驟數 guidance_scale = 9 # 控制生成圖像與文本提示的一致性 # 生成圖片 with torch.no_grad(): image = pipeline(prompt, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale)["images"][0] # 保存或顯示圖像 image.save("generated_image.png") image.show() ```