File size: 1,557 Bytes
a6158be |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 |
---
base_model:
- WizardLMTeam/WizardMath-7B-V1.1
- abacusai/Slerp-CM-mist-dpo
tags:
- merge
- mergekit
- lazymergekit
- WizardLMTeam/WizardMath-7B-V1.1
- abacusai/Slerp-CM-mist-dpo
---
# BabyHydra-dare
* [WizardLMTeam/WizardMath-7B-V1.1](https://huggingface.co/WizardLMTeam/WizardMath-7B-V1.1)
* [abacusai/Slerp-CM-mist-dpo](https://huggingface.co/abacusai/Slerp-CM-mist-dpo)
## 🧩 Configuration
```yaml
models:
- model: OpenPipe/mistral-ft-optimized-1218
# No parameters necessary for base model
- model: WizardLMTeam/WizardMath-7B-V1.1
parameters:
density: 0.53
weight: 0.4
- model: abacusai/Slerp-CM-mist-dpo
parameters:
density: 0.53
weight: 0.3
merge_method: dare_ties
base_model: OpenPipe/mistral-ft-optimized-1218
parameters:
int8_mask: true
normalize: true
dtype: bfloat16
```
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "jS84/BabyHydra-dare"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```
Thanks to MergeKit and Lazymergekit for the inspiration! |