File size: 12,841 Bytes
844f7c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
from torch import nn
from utils.par_embed import ParallelVarPatchEmbed
from utils.pos_embed import get_1d_sincos_pos_embed_from_grid,get_2d_sincos_pos_embed
from utils.feature_extractor import IterativeUpsampleStepParams
from utils.head import Head
import torch
from functools import lru_cache
from timm.models.vision_transformer import Block, PatchEmbed, trunc_normal_
import numpy as np
from typing import List, Literal

class ClimaXLegacy(nn.Module):
    """Implements the ClimaX model as described in the paper,
    https://arxiv.org/abs/2301.10343

    Args:
        default_vars (list): list of default variables to be used for training
        img_size (list): image size of the input data
        patch_size (int): patch size of the input data
        embed_dim (int): embedding dimension
        depth (int): number of transformer layers
        decoder_depth (int): number of decoder layers
        num_heads (int): number of attention heads
        mlp_ratio (float): ratio of mlp hidden dimension to embedding dimension
        drop_path (float): stochastic depth rate
        drop_rate (float): dropout rate
        parallel_patch_embed (bool): whether to use parallel patch embedding
        upsampling_steps (List[IterativeUpsampleStepParams]): Each dict represents a step of upsampling. 
            scale_factor determines by what scale the 2D dimensions grow. 
            new_channel_dim determines what the channel dimension should at the end of that step.
            feature_dim determines what the channel depth should be for the feature set that is stacked on at start of step
    """

    def __init__(
        self,
        default_vars,
        img_size=[32, 64],
        patch_size=2,
        embed_dim=1024,
        depth=8,
        decoder_depth=2,
        num_heads=16,
        mlp_ratio=4.0,
        drop_path=0.1,
        drop_rate=0.1,
        out_dim=1,
        parallel_patch_embed=False,
        pretrained=False,
        upsampling_steps: List[IterativeUpsampleStepParams]  = [{"step_scale_factor": 2, "new_channel_dim" : 1, "feature_dim": 1, "block_count": 1}],
        feature_extractor_type: Literal["simple", "res-net"] = "res-net",
        double=False,
        **kwargs
    ):
        super().__init__()

        # TODO: remove time_history parameter
        self.img_size = img_size
        self.patch_size = patch_size
        self.default_vars = default_vars
        self.parallel_patch_embed = parallel_patch_embed
        # variable tokenization: separate embedding layer for each input variable
        if self.parallel_patch_embed:
            self.token_embeds = ParallelVarPatchEmbed(len(default_vars), img_size, patch_size, embed_dim)
            self.num_patches = self.token_embeds.num_patches
        else:
            self.token_embeds = nn.ModuleList(
                [PatchEmbed(img_size, patch_size, 1, embed_dim) for i in range(len(default_vars))]
            )
            self.num_patches = self.token_embeds[0].num_patches

        # variable embedding to denote which variable each token belongs to
        # helps in aggregating variables
        self.var_embed, self.var_map = self.create_var_embedding(embed_dim)

        # variable aggregation: a learnable query and a single-layer cross attention
        self.var_query = nn.Parameter(torch.zeros(1, 1, embed_dim), requires_grad=True)
        self.var_agg = nn.MultiheadAttention(embed_dim, num_heads, batch_first=True)

        # positional embedding and lead time embedding
        self.pos_embed = nn.Parameter(torch.zeros(1, self.num_patches, embed_dim), requires_grad=True)
        self.lead_time_embed = nn.Linear(1, embed_dim)

        # --------------------------------------------------------------------------

        # ViT backbone
        self.pos_drop = nn.Dropout(p=drop_rate)
        dpr = [x.item() for x in torch.linspace(0, drop_path, depth)]  # stochastic depth decay rule
        self.blocks = nn.ModuleList(
            [
                Block(
                    embed_dim,
                    num_heads,
                    mlp_ratio,
                    qkv_bias=True,
                    drop_path=dpr[i],
                    norm_layer=nn.LayerNorm,
                    proj_drop=drop_rate,
                )
                for i in range(depth)
            ]
        )
        self.norm = nn.LayerNorm(embed_dim)

        # --------------------------------------------------------------------------

        # prediction head
        self.out_dim  = out_dim
        self.head = Head(embed_dim, decoder_depth, img_size, patch_size, upsampling_steps, out_dim, feature_extractor_type,double=double)

        # --------------------------------------------------------------------------

        self.initialize_weights()
        if pretrained:
            ckpt = torch.load(pretrained,map_location='cpu')
            state_dict = {k.replace('net.',''):v for k,v in ckpt['state_dict'].items()}
            current_dict = self.state_dict()
            for k in state_dict:
                if k in current_dict and current_dict[k].shape != state_dict[k].shape:
                    print("do not load, shape mismatch:",k)
                    state_dict[k] = current_dict[k]

            self.load_state_dict(state_dict,strict=False)

        self.is_double = double

    def initialize_weights(self):
        # initialize pos_emb and var_emb
        pos_embed = get_2d_sincos_pos_embed(
            self.pos_embed.shape[-1],
            int(self.img_size[0] / self.patch_size),
            int(self.img_size[1] / self.patch_size),
            cls_token=False,
        )
        self.pos_embed.data.copy_(torch.from_numpy(pos_embed).float().unsqueeze(0))

        var_embed = get_1d_sincos_pos_embed_from_grid(self.var_embed.shape[-1], np.arange(len(self.default_vars)))
        self.var_embed.data.copy_(torch.from_numpy(var_embed).float().unsqueeze(0))

        # token embedding layer
        if self.parallel_patch_embed:
            for i in range(len(self.token_embeds.proj_weights)):
                w = self.token_embeds.proj_weights[i].data
                trunc_normal_(w.view([w.shape[0], -1]), std=0.02)
        else:
            for i in range(len(self.token_embeds)):
                w = self.token_embeds[i].proj.weight.data
                trunc_normal_(w.view([w.shape[0], -1]), std=0.02)

        # initialize nn.Linear and nn.LayerNorm
        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=0.02)
            if m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)

    def create_var_embedding(self, dim):
        var_embed = nn.Parameter(torch.zeros(1, len(self.default_vars), dim), requires_grad=True)
        # TODO: create a mapping from var --> idx
        var_map = {}
        idx = 0
        for var in self.default_vars:
            var_map[var] = idx
            idx += 1
        return var_embed, var_map

    @lru_cache(maxsize=None)
    def get_var_ids(self, vars, device):
        ids = np.array([self.var_map[var] for var in vars])
        return torch.from_numpy(ids).to(device)

    def get_var_emb(self, var_emb, vars):
        ids = self.get_var_ids(vars, var_emb.device)
        return var_emb[:, ids, :]

    def unpatchify(self, x: torch.Tensor, h=None, w=None):
        """
        x: (B, L, V * patch_size**2)
        return imgs: (B, V, H, W)
        """
        p = self.patch_size
        c =  self.out_dim
        h = self.img_size[0] // p if h is None else h // p
        w = self.img_size[1] // p if w is None else w // p
        assert h * w == x.shape[1]

        x = x.reshape(shape=(x.shape[0], h, w, p, p, c))
        x = torch.einsum("nhwpqc->nchpwq", x)
        imgs = x.reshape(shape=(x.shape[0], c, h * p, w * p))
        return imgs

    def aggregate_variables(self, x: torch.Tensor):
        """
        x: B, V, L, D
        """
        b, _, l, _ = x.shape
        x = torch.einsum("bvld->blvd", x)
        x = x.flatten(0, 1)  # BxL, V, D

        var_query = self.var_query.repeat_interleave(x.shape[0], dim=0)
        x, _ = self.var_agg(var_query, x, x)  # BxL, D
        x = x.squeeze()

        x = x.unflatten(dim=0, sizes=(b, l))  # B, L, D
        return x

    def forward_head(self, x: torch.Tensor, original_image: torch.Tensor):
        return self.head.forward(x, original_image)

    def forward_encoder(self, x: torch.Tensor, lead_times: torch.Tensor, variables):
        # x: `[B, V, H, W]` shape.

        if isinstance(variables, list):
            variables = tuple(variables)

        # tokenize each variable separately
        embeds = []
        var_ids = self.get_var_ids(variables, x.device)

        if self.parallel_patch_embed:
            x = self.token_embeds(x, var_ids)  # B, V, L, D
        else:
            for i in range(len(var_ids)):
                id = var_ids[i]
                embeds.append(self.token_embeds[id](x[:, i : i + 1]))
            x = torch.stack(embeds, dim=1)  # B, V, L, D

        # add variable embedding
        var_embed = self.get_var_emb(self.var_embed, variables)
        x = x + var_embed.unsqueeze(2)  # B, V, L, D

        # variable aggregation
        x = self.aggregate_variables(x)  # B, L, D

        # add pos embedding
        x = x + self.pos_embed

        # add lead time embedding
        lead_time_emb = self.lead_time_embed(lead_times.unsqueeze(-1))  # B, D
        lead_time_emb = lead_time_emb.unsqueeze(1)
        x = x + lead_time_emb  # B, L, D

        x = self.pos_drop(x)

        # apply Transformer blocks
        for blk in self.blocks:
            x = blk(x)
        x = self.norm(x)

        return x

    
    def forward(self, x, lead_times=None, variables=None):
        x = x.to(memory_format=torch.channels_last)
        if self.training or( x.shape[2] == self.img_size[0] and  x.shape[3] == self.img_size[1] ):
            return self.local_forward(x, lead_times, variables)
        else:
            assert  x.shape[2]  % self.img_size[0] ==0 and  x.shape[3]  % self.img_size[1]  ==0
            nh = x.shape[2] // self.img_size[0]
            nw = x.shape[3] // self.img_size[1]
            output = torch.zeros(x.shape[0],self.out_dim,x.shape[2],x.shape[3]).to(x)
            for i in range(nh):
                for j in range(nw):
                    local_y = self.local_forward(x[...,i*self.img_size[0]:(i+1)*self.img_size[0],j*self.img_size[1]:(j+1)*self.img_size[1]], lead_times, variables)
                    output[...,i*self.img_size[0]:(i+1)*self.img_size[0],j*self.img_size[1]:(j+1)*self.img_size[1]]=local_y
            return output

    def local_forward(self, x, lead_times=None, variables=None):
        """Forward pass through the model.

        Args:
            x: `[B, Vi, H, W]` shape. Input weather/climate variables
            y: `[B, Vo, H, W]` shape. Target weather/climate variables
            lead_times: `[B]` shape. Forecasting lead times of each element of the batch.

        Returns:
            loss (list): Different metrics.
            preds (torch.Tensor): `[B, Vo, H, W]` shape. Predicted weather/climate variables.
        """
        x_raw = x
        if variables is None:
            variables = self.default_vars
        if len(x.shape) == 5: # N T C H W -> N C H W (dropping time)
            assert x.shape[1] == 1
            x = x.squeeze(1)
        n = x.shape[0]
        if lead_times is None:
            lead_times = torch.ones(n).to(x)
        if self.is_double:
            x0,x1 = x.chunk(2,dim=1)
            assert x0.shape[1] == 3
            x = torch.cat([x0,x1])
            lead_times = torch.cat([lead_times,lead_times])
            out_transformers = self.forward_encoder(x, lead_times, variables)  # B, L, D
            x0,x1 =out_transformers.chunk(2,dim=0)
            out_transformers = torch.cat([x0,x1],dim=-1)
        else:
            out_transformers = self.forward_encoder(x, lead_times, variables)  # B, L, D
        preds = self.forward_head(x=out_transformers, original_image=x_raw)  # B, L, V*p

        preds = self.unpatchify(preds)
        return preds
        return loss, preds

    def evaluate(self, x, y, lead_times, variables, out_variables, transform, metrics, lat, clim, log_postfix):
        _, preds = self.forward(x, y, lead_times, variables, out_variables, metric=None, lat=lat)
        return [m(preds, y, transform, out_variables, lat, clim, log_postfix) for m in metrics]
    

if __name__ == '__main__':
    variables = ['R','G','B']
    z = ClimaXLegacy(img_size=[512,512],patch_size=16,default_vars=variables)
    x = torch.rand(3,3,512,512)
    z.eval()
    x = torch.rand(3,3,1024,1024)
    z(x)