File size: 12,841 Bytes
844f7c0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 |
from torch import nn
from utils.par_embed import ParallelVarPatchEmbed
from utils.pos_embed import get_1d_sincos_pos_embed_from_grid,get_2d_sincos_pos_embed
from utils.feature_extractor import IterativeUpsampleStepParams
from utils.head import Head
import torch
from functools import lru_cache
from timm.models.vision_transformer import Block, PatchEmbed, trunc_normal_
import numpy as np
from typing import List, Literal
class ClimaXLegacy(nn.Module):
"""Implements the ClimaX model as described in the paper,
https://arxiv.org/abs/2301.10343
Args:
default_vars (list): list of default variables to be used for training
img_size (list): image size of the input data
patch_size (int): patch size of the input data
embed_dim (int): embedding dimension
depth (int): number of transformer layers
decoder_depth (int): number of decoder layers
num_heads (int): number of attention heads
mlp_ratio (float): ratio of mlp hidden dimension to embedding dimension
drop_path (float): stochastic depth rate
drop_rate (float): dropout rate
parallel_patch_embed (bool): whether to use parallel patch embedding
upsampling_steps (List[IterativeUpsampleStepParams]): Each dict represents a step of upsampling.
scale_factor determines by what scale the 2D dimensions grow.
new_channel_dim determines what the channel dimension should at the end of that step.
feature_dim determines what the channel depth should be for the feature set that is stacked on at start of step
"""
def __init__(
self,
default_vars,
img_size=[32, 64],
patch_size=2,
embed_dim=1024,
depth=8,
decoder_depth=2,
num_heads=16,
mlp_ratio=4.0,
drop_path=0.1,
drop_rate=0.1,
out_dim=1,
parallel_patch_embed=False,
pretrained=False,
upsampling_steps: List[IterativeUpsampleStepParams] = [{"step_scale_factor": 2, "new_channel_dim" : 1, "feature_dim": 1, "block_count": 1}],
feature_extractor_type: Literal["simple", "res-net"] = "res-net",
double=False,
**kwargs
):
super().__init__()
# TODO: remove time_history parameter
self.img_size = img_size
self.patch_size = patch_size
self.default_vars = default_vars
self.parallel_patch_embed = parallel_patch_embed
# variable tokenization: separate embedding layer for each input variable
if self.parallel_patch_embed:
self.token_embeds = ParallelVarPatchEmbed(len(default_vars), img_size, patch_size, embed_dim)
self.num_patches = self.token_embeds.num_patches
else:
self.token_embeds = nn.ModuleList(
[PatchEmbed(img_size, patch_size, 1, embed_dim) for i in range(len(default_vars))]
)
self.num_patches = self.token_embeds[0].num_patches
# variable embedding to denote which variable each token belongs to
# helps in aggregating variables
self.var_embed, self.var_map = self.create_var_embedding(embed_dim)
# variable aggregation: a learnable query and a single-layer cross attention
self.var_query = nn.Parameter(torch.zeros(1, 1, embed_dim), requires_grad=True)
self.var_agg = nn.MultiheadAttention(embed_dim, num_heads, batch_first=True)
# positional embedding and lead time embedding
self.pos_embed = nn.Parameter(torch.zeros(1, self.num_patches, embed_dim), requires_grad=True)
self.lead_time_embed = nn.Linear(1, embed_dim)
# --------------------------------------------------------------------------
# ViT backbone
self.pos_drop = nn.Dropout(p=drop_rate)
dpr = [x.item() for x in torch.linspace(0, drop_path, depth)] # stochastic depth decay rule
self.blocks = nn.ModuleList(
[
Block(
embed_dim,
num_heads,
mlp_ratio,
qkv_bias=True,
drop_path=dpr[i],
norm_layer=nn.LayerNorm,
proj_drop=drop_rate,
)
for i in range(depth)
]
)
self.norm = nn.LayerNorm(embed_dim)
# --------------------------------------------------------------------------
# prediction head
self.out_dim = out_dim
self.head = Head(embed_dim, decoder_depth, img_size, patch_size, upsampling_steps, out_dim, feature_extractor_type,double=double)
# --------------------------------------------------------------------------
self.initialize_weights()
if pretrained:
ckpt = torch.load(pretrained,map_location='cpu')
state_dict = {k.replace('net.',''):v for k,v in ckpt['state_dict'].items()}
current_dict = self.state_dict()
for k in state_dict:
if k in current_dict and current_dict[k].shape != state_dict[k].shape:
print("do not load, shape mismatch:",k)
state_dict[k] = current_dict[k]
self.load_state_dict(state_dict,strict=False)
self.is_double = double
def initialize_weights(self):
# initialize pos_emb and var_emb
pos_embed = get_2d_sincos_pos_embed(
self.pos_embed.shape[-1],
int(self.img_size[0] / self.patch_size),
int(self.img_size[1] / self.patch_size),
cls_token=False,
)
self.pos_embed.data.copy_(torch.from_numpy(pos_embed).float().unsqueeze(0))
var_embed = get_1d_sincos_pos_embed_from_grid(self.var_embed.shape[-1], np.arange(len(self.default_vars)))
self.var_embed.data.copy_(torch.from_numpy(var_embed).float().unsqueeze(0))
# token embedding layer
if self.parallel_patch_embed:
for i in range(len(self.token_embeds.proj_weights)):
w = self.token_embeds.proj_weights[i].data
trunc_normal_(w.view([w.shape[0], -1]), std=0.02)
else:
for i in range(len(self.token_embeds)):
w = self.token_embeds[i].proj.weight.data
trunc_normal_(w.view([w.shape[0], -1]), std=0.02)
# initialize nn.Linear and nn.LayerNorm
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=0.02)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
def create_var_embedding(self, dim):
var_embed = nn.Parameter(torch.zeros(1, len(self.default_vars), dim), requires_grad=True)
# TODO: create a mapping from var --> idx
var_map = {}
idx = 0
for var in self.default_vars:
var_map[var] = idx
idx += 1
return var_embed, var_map
@lru_cache(maxsize=None)
def get_var_ids(self, vars, device):
ids = np.array([self.var_map[var] for var in vars])
return torch.from_numpy(ids).to(device)
def get_var_emb(self, var_emb, vars):
ids = self.get_var_ids(vars, var_emb.device)
return var_emb[:, ids, :]
def unpatchify(self, x: torch.Tensor, h=None, w=None):
"""
x: (B, L, V * patch_size**2)
return imgs: (B, V, H, W)
"""
p = self.patch_size
c = self.out_dim
h = self.img_size[0] // p if h is None else h // p
w = self.img_size[1] // p if w is None else w // p
assert h * w == x.shape[1]
x = x.reshape(shape=(x.shape[0], h, w, p, p, c))
x = torch.einsum("nhwpqc->nchpwq", x)
imgs = x.reshape(shape=(x.shape[0], c, h * p, w * p))
return imgs
def aggregate_variables(self, x: torch.Tensor):
"""
x: B, V, L, D
"""
b, _, l, _ = x.shape
x = torch.einsum("bvld->blvd", x)
x = x.flatten(0, 1) # BxL, V, D
var_query = self.var_query.repeat_interleave(x.shape[0], dim=0)
x, _ = self.var_agg(var_query, x, x) # BxL, D
x = x.squeeze()
x = x.unflatten(dim=0, sizes=(b, l)) # B, L, D
return x
def forward_head(self, x: torch.Tensor, original_image: torch.Tensor):
return self.head.forward(x, original_image)
def forward_encoder(self, x: torch.Tensor, lead_times: torch.Tensor, variables):
# x: `[B, V, H, W]` shape.
if isinstance(variables, list):
variables = tuple(variables)
# tokenize each variable separately
embeds = []
var_ids = self.get_var_ids(variables, x.device)
if self.parallel_patch_embed:
x = self.token_embeds(x, var_ids) # B, V, L, D
else:
for i in range(len(var_ids)):
id = var_ids[i]
embeds.append(self.token_embeds[id](x[:, i : i + 1]))
x = torch.stack(embeds, dim=1) # B, V, L, D
# add variable embedding
var_embed = self.get_var_emb(self.var_embed, variables)
x = x + var_embed.unsqueeze(2) # B, V, L, D
# variable aggregation
x = self.aggregate_variables(x) # B, L, D
# add pos embedding
x = x + self.pos_embed
# add lead time embedding
lead_time_emb = self.lead_time_embed(lead_times.unsqueeze(-1)) # B, D
lead_time_emb = lead_time_emb.unsqueeze(1)
x = x + lead_time_emb # B, L, D
x = self.pos_drop(x)
# apply Transformer blocks
for blk in self.blocks:
x = blk(x)
x = self.norm(x)
return x
def forward(self, x, lead_times=None, variables=None):
x = x.to(memory_format=torch.channels_last)
if self.training or( x.shape[2] == self.img_size[0] and x.shape[3] == self.img_size[1] ):
return self.local_forward(x, lead_times, variables)
else:
assert x.shape[2] % self.img_size[0] ==0 and x.shape[3] % self.img_size[1] ==0
nh = x.shape[2] // self.img_size[0]
nw = x.shape[3] // self.img_size[1]
output = torch.zeros(x.shape[0],self.out_dim,x.shape[2],x.shape[3]).to(x)
for i in range(nh):
for j in range(nw):
local_y = self.local_forward(x[...,i*self.img_size[0]:(i+1)*self.img_size[0],j*self.img_size[1]:(j+1)*self.img_size[1]], lead_times, variables)
output[...,i*self.img_size[0]:(i+1)*self.img_size[0],j*self.img_size[1]:(j+1)*self.img_size[1]]=local_y
return output
def local_forward(self, x, lead_times=None, variables=None):
"""Forward pass through the model.
Args:
x: `[B, Vi, H, W]` shape. Input weather/climate variables
y: `[B, Vo, H, W]` shape. Target weather/climate variables
lead_times: `[B]` shape. Forecasting lead times of each element of the batch.
Returns:
loss (list): Different metrics.
preds (torch.Tensor): `[B, Vo, H, W]` shape. Predicted weather/climate variables.
"""
x_raw = x
if variables is None:
variables = self.default_vars
if len(x.shape) == 5: # N T C H W -> N C H W (dropping time)
assert x.shape[1] == 1
x = x.squeeze(1)
n = x.shape[0]
if lead_times is None:
lead_times = torch.ones(n).to(x)
if self.is_double:
x0,x1 = x.chunk(2,dim=1)
assert x0.shape[1] == 3
x = torch.cat([x0,x1])
lead_times = torch.cat([lead_times,lead_times])
out_transformers = self.forward_encoder(x, lead_times, variables) # B, L, D
x0,x1 =out_transformers.chunk(2,dim=0)
out_transformers = torch.cat([x0,x1],dim=-1)
else:
out_transformers = self.forward_encoder(x, lead_times, variables) # B, L, D
preds = self.forward_head(x=out_transformers, original_image=x_raw) # B, L, V*p
preds = self.unpatchify(preds)
return preds
return loss, preds
def evaluate(self, x, y, lead_times, variables, out_variables, transform, metrics, lat, clim, log_postfix):
_, preds = self.forward(x, y, lead_times, variables, out_variables, metric=None, lat=lat)
return [m(preds, y, transform, out_variables, lat, clim, log_postfix) for m in metrics]
if __name__ == '__main__':
variables = ['R','G','B']
z = ClimaXLegacy(img_size=[512,512],patch_size=16,default_vars=variables)
x = torch.rand(3,3,512,512)
z.eval()
x = torch.rand(3,3,1024,1024)
z(x) |