File size: 9,250 Bytes
844f7c0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 |
import numpy as np
import torch
import torch.nn.functional as F
from torch import nn
from torch.autograd import Variable
try:
from itertools import ifilterfalse
except ImportError: # py3k
from itertools import filterfalse
eps = 1e-6
def dice_round(preds, trues):
preds = preds.float()
return soft_dice_loss(preds, trues)
def iou_round(preds, trues):
preds = preds.float()
return jaccard(preds, trues)
def soft_dice_loss(outputs, targets, per_image=False):
batch_size = outputs.size()[0]
if not per_image:
batch_size = 1
dice_target = targets.contiguous().view(batch_size, -1).float()
dice_output = outputs.contiguous().view(batch_size, -1)
intersection = torch.sum(dice_output * dice_target, dim=1)
union = torch.sum(dice_output, dim=1) + torch.sum(dice_target, dim=1) + eps
loss = (1 - (2 * intersection + eps) / union).mean()
return loss
def jaccard(outputs, targets, per_image=False):
batch_size = outputs.size()[0]
if not per_image:
batch_size = 1
dice_target = targets.contiguous().view(batch_size, -1).float()
dice_output = outputs.contiguous().view(batch_size, -1)
intersection = torch.sum(dice_output * dice_target, dim=1)
union = torch.sum(dice_output, dim=1) + torch.sum(dice_target, dim=1) - intersection + eps
losses = 1 - (intersection + eps) / union
return losses.mean()
class DiceLoss(nn.Module):
def __init__(self, weight=None, size_average=True, per_image=False):
super().__init__()
self.size_average = size_average
self.register_buffer('weight', weight)
self.per_image = per_image
def forward(self, input, target):
return soft_dice_loss(input, target, per_image=self.per_image)
class JaccardLoss(nn.Module):
def __init__(self, weight=None, size_average=True, per_image=False):
super().__init__()
self.size_average = size_average
self.register_buffer('weight', weight)
self.per_image = per_image
def forward(self, input, target):
return jaccard(input, target, per_image=self.per_image)
class StableBCELoss(nn.Module):
def __init__(self):
super(StableBCELoss, self).__init__()
def forward(self, input, target):
input = input.float().view(-1)
target = target.float().view(-1)
neg_abs = - input.abs()
# todo check correctness
loss = input.clamp(min=0) - input * target + (1 + neg_abs.exp()).log()
return loss.mean()
class ComboLoss(nn.Module):
def __init__(self, weights, per_image=False):
super().__init__()
self.weights = weights
self.bce = StableBCELoss()
self.dice = DiceLoss(per_image=False)
self.jaccard = JaccardLoss(per_image=False)
self.lovasz = LovaszLoss(per_image=per_image)
self.lovasz_sigmoid = LovaszLossSigmoid(per_image=per_image)
self.focal = FocalLoss2d()
self.mapping = {'bce': self.bce,
'dice': self.dice,
'focal': self.focal,
'jaccard': self.jaccard,
'lovasz': self.lovasz,
'lovasz_sigmoid': self.lovasz_sigmoid}
self.expect_sigmoid = {'dice', 'focal', 'jaccard', 'lovasz_sigmoid'}
self.values = {}
def forward(self, outputs, targets):
loss = 0
weights = self.weights
sigmoid_input = torch.sigmoid(outputs)
for k, v in weights.items():
if not v:
continue
val = self.mapping[k](sigmoid_input if k in self.expect_sigmoid else outputs, targets)
self.values[k] = val
loss += self.weights[k] * val
return loss
def lovasz_grad(gt_sorted):
"""
Computes gradient of the Lovasz extension w.r.t sorted errors
See Alg. 1 in paper
"""
p = len(gt_sorted)
gts = gt_sorted.sum()
intersection = gts.float() - gt_sorted.float().cumsum(0)
union = gts.float() + (1 - gt_sorted).float().cumsum(0)
jaccard = 1. - intersection / union
if p > 1: # cover 1-pixel case
jaccard[1:p] = jaccard[1:p] - jaccard[0:-1]
return jaccard
def lovasz_hinge(logits, labels, per_image=True, ignore=None):
"""
Binary Lovasz hinge loss
logits: [B, H, W] Variable, logits at each pixel (between -\infty and +\infty)
labels: [B, H, W] Tensor, binary ground truth masks (0 or 1)
per_image: compute the loss per image instead of per batch
ignore: void class id
"""
if per_image:
loss = mean(lovasz_hinge_flat(*flatten_binary_scores(log.unsqueeze(0), lab.unsqueeze(0), ignore))
for log, lab in zip(logits, labels))
else:
loss = lovasz_hinge_flat(*flatten_binary_scores(logits, labels, ignore))
return loss
def lovasz_hinge_flat(logits, labels):
"""
Binary Lovasz hinge loss
logits: [P] Variable, logits at each prediction (between -\infty and +\infty)
labels: [P] Tensor, binary ground truth labels (0 or 1)
ignore: label to ignore
"""
if len(labels) == 0:
# only void pixels, the gradients should be 0
return logits.sum() * 0.
signs = 2. * labels.float() - 1.
errors = (1. - logits * Variable(signs))
errors_sorted, perm = torch.sort(errors, dim=0, descending=True)
perm = perm.data
gt_sorted = labels[perm]
grad = lovasz_grad(gt_sorted)
loss = torch.dot(F.relu(errors_sorted), Variable(grad))
return loss
def flatten_binary_scores(scores, labels, ignore=None):
"""
Flattens predictions in the batch (binary case)
Remove labels equal to 'ignore'
"""
scores = scores.view(-1)
labels = labels.view(-1)
if ignore is None:
return scores, labels
valid = (labels != ignore)
vscores = scores[valid]
vlabels = labels[valid]
return vscores, vlabels
def lovasz_sigmoid(probas, labels, per_image=False, ignore=None):
"""
Multi-class Lovasz-Softmax loss
probas: [B, C, H, W] Variable, class probabilities at each prediction (between 0 and 1)
labels: [B, H, W] Tensor, ground truth labels (between 0 and C - 1)
only_present: average only on classes present in ground truth
per_image: compute the loss per image instead of per batch
ignore: void class labels
"""
if per_image:
loss = mean(lovasz_sigmoid_flat(*flatten_binary_scores(prob.unsqueeze(0), lab.unsqueeze(0), ignore))
for prob, lab in zip(probas, labels))
else:
loss = lovasz_sigmoid_flat(*flatten_binary_scores(probas, labels, ignore))
return loss
def lovasz_sigmoid_flat(probas, labels):
"""
Multi-class Lovasz-Softmax loss
probas: [P, C] Variable, class probabilities at each prediction (between 0 and 1)
labels: [P] Tensor, ground truth labels (between 0 and C - 1)
only_present: average only on classes present in ground truth
"""
fg = labels.float()
errors = (Variable(fg) - probas).abs()
errors_sorted, perm = torch.sort(errors, 0, descending=True)
perm = perm.data
fg_sorted = fg[perm]
loss = torch.dot(errors_sorted, Variable(lovasz_grad(fg_sorted)))
return loss
def mean(l, ignore_nan=False, empty=0):
"""
nanmean compatible with generators.
"""
l = iter(l)
if ignore_nan:
l = ifilterfalse(np.isnan, l)
try:
n = 1
acc = next(l)
except StopIteration:
if empty == 'raise':
raise ValueError('Empty mean')
return empty
for n, v in enumerate(l, 2):
acc += v
if n == 1:
return acc
return acc / n
class LovaszLoss(nn.Module):
def __init__(self, ignore_index=255, per_image=True):
super().__init__()
self.ignore_index = ignore_index
self.per_image = per_image
def forward(self, outputs, targets):
outputs = outputs.contiguous()
targets = targets.contiguous()
return lovasz_hinge(outputs, targets, per_image=self.per_image, ignore=self.ignore_index)
class LovaszLossSigmoid(nn.Module):
def __init__(self, ignore_index=255, per_image=True):
super().__init__()
self.ignore_index = ignore_index
self.per_image = per_image
def forward(self, outputs, targets):
outputs = outputs.contiguous()
targets = targets.contiguous()
return lovasz_sigmoid(outputs, targets, per_image=self.per_image, ignore=self.ignore_index)
class FocalLoss2d(nn.Module):
def __init__(self, gamma=2, ignore_index=255):
super().__init__()
self.gamma = gamma
self.ignore_index = ignore_index
def forward(self, outputs, targets):
outputs = outputs.contiguous()
targets = targets.contiguous()
# eps = 1e-8
non_ignored = targets.view(-1) != self.ignore_index
targets = targets.view(-1)[non_ignored].float()
outputs = outputs.contiguous().view(-1)[non_ignored]
outputs = torch.clamp(outputs, eps, 1. - eps)
targets = torch.clamp(targets, eps, 1. - eps)
pt = (1 - targets) * (1 - outputs) + targets * outputs
return (-(1. - pt) ** self.gamma * torch.log(pt)).mean() |