|
import os |
|
os.environ["MKL_NUM_THREADS"] = "1" |
|
os.environ["NUMEXPR_NUM_THREADS"] = "1" |
|
os.environ["OMP_NUM_THREADS"] = "1" |
|
from os import path, makedirs |
|
import sys |
|
import numpy as np |
|
np.random.seed(1) |
|
import random |
|
random.seed(1) |
|
import torch |
|
torch.set_num_threads(1) |
|
from torch import nn |
|
from torch.autograd import Variable |
|
import timeit |
|
import cv2 |
|
|
|
os.environ["CUDA_VISIBLE_DEVICES"] = '' |
|
|
|
from zoo.models import SeResNext50_Unet_Double |
|
|
|
from utils import preprocess_inputs |
|
|
|
cv2.setNumThreads(0) |
|
cv2.ocl.setUseOpenCL(False) |
|
|
|
models_folder = 'weights' |
|
|
|
if __name__ == '__main__': |
|
t0 = timeit.default_timer() |
|
|
|
seed = int(sys.argv[1]) |
|
|
|
pre_file = sys.argv[2] |
|
post_file = sys.argv[3] |
|
loc_pred_file = sys.argv[4] |
|
cls_pred_file = sys.argv[5] |
|
|
|
pred_folder = 'res50cls_{}_tuned'.format(seed) |
|
makedirs(pred_folder, exist_ok=True) |
|
|
|
models = [] |
|
|
|
snap_to_load = 'res50_cls_cce_{}_tuned2_best'.format(seed) |
|
|
|
model = SeResNext50_Unet_Double(pretrained=None) |
|
|
|
model = nn.DataParallel(model) |
|
|
|
print("=> loading checkpoint '{}'".format(snap_to_load)) |
|
checkpoint = torch.load(path.join(models_folder, snap_to_load), map_location='cpu') |
|
loaded_dict = checkpoint['state_dict'] |
|
sd = model.state_dict() |
|
for k in model.state_dict(): |
|
if k in loaded_dict and sd[k].size() == loaded_dict[k].size(): |
|
sd[k] = loaded_dict[k] |
|
loaded_dict = sd |
|
model.load_state_dict(loaded_dict) |
|
print("loaded checkpoint '{}' (epoch {}, best_score {})" |
|
.format(snap_to_load, checkpoint['epoch'], checkpoint['best_score'])) |
|
|
|
model.eval() |
|
models.append(model) |
|
|
|
with torch.no_grad(): |
|
img = cv2.imread(pre_file, cv2.IMREAD_COLOR) |
|
img2 = cv2.imread(post_file, cv2.IMREAD_COLOR) |
|
|
|
img = np.concatenate([img, img2], axis=2) |
|
img = preprocess_inputs(img) |
|
|
|
inp = [] |
|
inp.append(img) |
|
inp.append(img[::-1, ...]) |
|
inp.append(img[:, ::-1, ...]) |
|
inp.append(img[::-1, ::-1, ...]) |
|
inp = np.asarray(inp, dtype='float') |
|
inp = torch.from_numpy(inp.transpose((0, 3, 1, 2))).float() |
|
inp = Variable(inp) |
|
|
|
pred = [] |
|
|
|
for model in models: |
|
for j in range(2): |
|
msk = model(inp[j*2:j*2+2]) |
|
msk = torch.softmax(msk[:, :, ...], dim=1) |
|
msk = msk.cpu().numpy() |
|
msk[:, 0, ...] = 1 - msk[:, 0, ...] |
|
|
|
if j == 0: |
|
pred.append(msk[0, ...]) |
|
pred.append(msk[1, :, ::-1, :]) |
|
else: |
|
pred.append(msk[0, :, :, ::-1]) |
|
pred.append(msk[1, :, ::-1, ::-1]) |
|
|
|
pred_full = np.asarray(pred).mean(axis=0) |
|
|
|
msk = pred_full * 255 |
|
msk = msk.astype('uint8').transpose(1, 2, 0) |
|
|
|
f = os.path.basename(cls_pred_file) |
|
cv2.imwrite(path.join(pred_folder, '{0}'.format(f + '_part1.png')), msk[..., :3], [cv2.IMWRITE_PNG_COMPRESSION, 9]) |
|
cv2.imwrite(path.join(pred_folder, '{0}'.format(f + '_part2.png')), msk[..., 2:], [cv2.IMWRITE_PNG_COMPRESSION, 9]) |
|
|
|
elapsed = timeit.default_timer() - t0 |
|
print('Time: {:.3f} min'.format(elapsed / 60)) |