|
""" PyTorch implementation of DualPathNetworks |
|
Ported to PyTorch by [Ross Wightman](https://github.com/rwightman/pytorch-dpn-pretrained) |
|
|
|
Based on original MXNet implementation https://github.com/cypw/DPNs with |
|
many ideas from another PyTorch implementation https://github.com/oyam/pytorch-DPNs. |
|
|
|
This implementation is compatible with the pretrained weights |
|
from cypw's MXNet implementation. |
|
""" |
|
import os |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import torch.utils.model_zoo as model_zoo |
|
from collections import OrderedDict |
|
|
|
__all__ = ['DPN', 'dpn68', 'dpn68b', 'dpn92', 'dpn98', 'dpn131', 'dpn107'] |
|
|
|
pretrained_settings = { |
|
'dpn68': { |
|
'imagenet': { |
|
'url': 'http://data.lip6.fr/cadene/pretrainedmodels/dpn68-66bebafa7.pth', |
|
'input_space': 'RGB', |
|
'input_size': [3, 224, 224], |
|
'input_range': [0, 1], |
|
'mean': [124 / 255, 117 / 255, 104 / 255], |
|
'std': [1 / (.0167 * 255)] * 3, |
|
'num_classes': 1000 |
|
} |
|
}, |
|
'dpn68b': { |
|
'imagenet+5k': { |
|
'url': 'http://data.lip6.fr/cadene/pretrainedmodels/dpn68b_extra-84854c156.pth', |
|
'input_space': 'RGB', |
|
'input_size': [3, 224, 224], |
|
'input_range': [0, 1], |
|
'mean': [124 / 255, 117 / 255, 104 / 255], |
|
'std': [1 / (.0167 * 255)] * 3, |
|
'num_classes': 1000 |
|
} |
|
}, |
|
'dpn92': { |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
'imagenet+5k': { |
|
'url': 'http://data.lip6.fr/cadene/pretrainedmodels/dpn92_extra-b040e4a9b.pth', |
|
'input_space': 'RGB', |
|
'input_size': [3, 224, 224], |
|
'input_range': [0, 1], |
|
'mean': [124 / 255, 117 / 255, 104 / 255], |
|
'std': [1 / (.0167 * 255)] * 3, |
|
'num_classes': 1000 |
|
} |
|
}, |
|
'dpn98': { |
|
'imagenet': { |
|
'url': 'http://data.lip6.fr/cadene/pretrainedmodels/dpn98-5b90dec4d.pth', |
|
'input_space': 'RGB', |
|
'input_size': [3, 224, 224], |
|
'input_range': [0, 1], |
|
'mean': [124 / 255, 117 / 255, 104 / 255], |
|
'std': [1 / (.0167 * 255)] * 3, |
|
'num_classes': 1000 |
|
} |
|
}, |
|
'dpn131': { |
|
'imagenet': { |
|
'url': 'http://data.lip6.fr/cadene/pretrainedmodels/dpn131-71dfe43e0.pth', |
|
'input_space': 'RGB', |
|
'input_size': [3, 224, 224], |
|
'input_range': [0, 1], |
|
'mean': [124 / 255, 117 / 255, 104 / 255], |
|
'std': [1 / (.0167 * 255)] * 3, |
|
'num_classes': 1000 |
|
} |
|
}, |
|
'dpn107': { |
|
'imagenet+5k': { |
|
'url': 'http://data.lip6.fr/cadene/pretrainedmodels/dpn107_extra-1ac7121e2.pth', |
|
'input_space': 'RGB', |
|
'input_size': [3, 224, 224], |
|
'input_range': [0, 1], |
|
'mean': [124 / 255, 117 / 255, 104 / 255], |
|
'std': [1 / (.0167 * 255)] * 3, |
|
'num_classes': 1000 |
|
} |
|
} |
|
} |
|
|
|
def dpn68(num_classes=1000, pretrained='imagenet'): |
|
model = DPN( |
|
small=True, num_init_features=10, k_r=128, groups=32, |
|
k_sec=(3, 4, 12, 3), inc_sec=(16, 32, 32, 64), |
|
num_classes=num_classes, test_time_pool=True) |
|
if pretrained: |
|
settings = pretrained_settings['dpn68'][pretrained] |
|
assert num_classes == settings['num_classes'], \ |
|
"num_classes should be {}, but is {}".format(settings['num_classes'], num_classes) |
|
|
|
model.load_state_dict(model_zoo.load_url(settings['url'])) |
|
model.input_space = settings['input_space'] |
|
model.input_size = settings['input_size'] |
|
model.input_range = settings['input_range'] |
|
model.mean = settings['mean'] |
|
model.std = settings['std'] |
|
return model |
|
|
|
def dpn68b(num_classes=1000, pretrained='imagenet+5k'): |
|
model = DPN( |
|
small=True, num_init_features=10, k_r=128, groups=32, |
|
b=True, k_sec=(3, 4, 12, 3), inc_sec=(16, 32, 32, 64), |
|
num_classes=num_classes, test_time_pool=True) |
|
if pretrained: |
|
settings = pretrained_settings['dpn68b'][pretrained] |
|
assert num_classes == settings['num_classes'], \ |
|
"num_classes should be {}, but is {}".format(settings['num_classes'], num_classes) |
|
|
|
model.load_state_dict(model_zoo.load_url(settings['url'])) |
|
model.input_space = settings['input_space'] |
|
model.input_size = settings['input_size'] |
|
model.input_range = settings['input_range'] |
|
model.mean = settings['mean'] |
|
model.std = settings['std'] |
|
return model |
|
|
|
def dpn92(num_classes=1000, pretrained='imagenet+5k'): |
|
model = DPN( |
|
num_init_features=64, k_r=96, groups=32, |
|
k_sec=(3, 4, 20, 3), inc_sec=(16, 32, 24, 128), |
|
num_classes=num_classes, test_time_pool=True) |
|
if pretrained: |
|
settings = pretrained_settings['dpn92'][pretrained] |
|
assert num_classes == settings['num_classes'], \ |
|
"num_classes should be {}, but is {}".format(settings['num_classes'], num_classes) |
|
|
|
model.load_state_dict(model_zoo.load_url(settings['url'])) |
|
model.input_space = settings['input_space'] |
|
model.input_size = settings['input_size'] |
|
model.input_range = settings['input_range'] |
|
model.mean = settings['mean'] |
|
model.std = settings['std'] |
|
return model |
|
|
|
def dpn98(num_classes=1000, pretrained='imagenet'): |
|
model = DPN( |
|
num_init_features=96, k_r=160, groups=40, |
|
k_sec=(3, 6, 20, 3), inc_sec=(16, 32, 32, 128), |
|
num_classes=num_classes, test_time_pool=True) |
|
if pretrained: |
|
settings = pretrained_settings['dpn98'][pretrained] |
|
assert num_classes == settings['num_classes'], \ |
|
"num_classes should be {}, but is {}".format(settings['num_classes'], num_classes) |
|
|
|
model.load_state_dict(model_zoo.load_url(settings['url'])) |
|
model.input_space = settings['input_space'] |
|
model.input_size = settings['input_size'] |
|
model.input_range = settings['input_range'] |
|
model.mean = settings['mean'] |
|
model.std = settings['std'] |
|
return model |
|
|
|
def dpn131(num_classes=1000, pretrained='imagenet'): |
|
model = DPN( |
|
num_init_features=128, k_r=160, groups=40, |
|
k_sec=(4, 8, 28, 3), inc_sec=(16, 32, 32, 128), |
|
num_classes=num_classes, test_time_pool=True) |
|
if pretrained: |
|
settings = pretrained_settings['dpn131'][pretrained] |
|
assert num_classes == settings['num_classes'], \ |
|
"num_classes should be {}, but is {}".format(settings['num_classes'], num_classes) |
|
|
|
model.load_state_dict(model_zoo.load_url(settings['url'])) |
|
model.input_space = settings['input_space'] |
|
model.input_size = settings['input_size'] |
|
model.input_range = settings['input_range'] |
|
model.mean = settings['mean'] |
|
model.std = settings['std'] |
|
return model |
|
|
|
def dpn107(num_classes=1000, pretrained='imagenet+5k'): |
|
model = DPN( |
|
num_init_features=128, k_r=200, groups=50, |
|
k_sec=(4, 8, 20, 3), inc_sec=(20, 64, 64, 128), |
|
num_classes=num_classes, test_time_pool=True) |
|
if pretrained: |
|
settings = pretrained_settings['dpn107'][pretrained] |
|
assert num_classes == settings['num_classes'], \ |
|
"num_classes should be {}, but is {}".format(settings['num_classes'], num_classes) |
|
|
|
model.load_state_dict(model_zoo.load_url(settings['url'])) |
|
model.input_space = settings['input_space'] |
|
model.input_size = settings['input_size'] |
|
model.input_range = settings['input_range'] |
|
model.mean = settings['mean'] |
|
model.std = settings['std'] |
|
return model |
|
|
|
|
|
class CatBnAct(nn.Module): |
|
def __init__(self, in_chs, activation_fn=nn.ReLU(inplace=True)): |
|
super(CatBnAct, self).__init__() |
|
self.bn = nn.BatchNorm2d(in_chs, eps=0.001) |
|
self.act = activation_fn |
|
|
|
def forward(self, x): |
|
x = torch.cat(x, dim=1) if isinstance(x, tuple) else x |
|
return self.act(self.bn(x)) |
|
|
|
|
|
class BnActConv2d(nn.Module): |
|
def __init__(self, in_chs, out_chs, kernel_size, stride, |
|
padding=0, groups=1, activation_fn=nn.ReLU(inplace=True)): |
|
super(BnActConv2d, self).__init__() |
|
self.bn = nn.BatchNorm2d(in_chs, eps=0.001) |
|
self.act = activation_fn |
|
self.conv = nn.Conv2d(in_chs, out_chs, kernel_size, stride, padding, groups=groups, bias=False) |
|
|
|
def forward(self, x): |
|
return self.conv(self.act(self.bn(x))) |
|
|
|
|
|
class InputBlock(nn.Module): |
|
def __init__(self, num_init_features, kernel_size=7, |
|
padding=3, activation_fn=nn.ReLU(inplace=True)): |
|
super(InputBlock, self).__init__() |
|
self.conv = nn.Conv2d( |
|
3, num_init_features, kernel_size=kernel_size, stride=2, padding=padding, bias=False) |
|
self.bn = nn.BatchNorm2d(num_init_features, eps=0.001) |
|
self.act = activation_fn |
|
self.pool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) |
|
|
|
def forward(self, x): |
|
x = self.conv(x) |
|
x = self.bn(x) |
|
x = self.act(x) |
|
x = self.pool(x) |
|
return x |
|
|
|
|
|
class DualPathBlock(nn.Module): |
|
def __init__( |
|
self, in_chs, num_1x1_a, num_3x3_b, num_1x1_c, inc, groups, block_type='normal', b=False): |
|
super(DualPathBlock, self).__init__() |
|
self.num_1x1_c = num_1x1_c |
|
self.inc = inc |
|
self.b = b |
|
if block_type is 'proj': |
|
self.key_stride = 1 |
|
self.has_proj = True |
|
elif block_type is 'down': |
|
self.key_stride = 2 |
|
self.has_proj = True |
|
else: |
|
assert block_type is 'normal' |
|
self.key_stride = 1 |
|
self.has_proj = False |
|
|
|
if self.has_proj: |
|
|
|
if self.key_stride == 2: |
|
self.c1x1_w_s2 = BnActConv2d( |
|
in_chs=in_chs, out_chs=num_1x1_c + 2 * inc, kernel_size=1, stride=2) |
|
else: |
|
self.c1x1_w_s1 = BnActConv2d( |
|
in_chs=in_chs, out_chs=num_1x1_c + 2 * inc, kernel_size=1, stride=1) |
|
self.c1x1_a = BnActConv2d(in_chs=in_chs, out_chs=num_1x1_a, kernel_size=1, stride=1) |
|
self.c3x3_b = BnActConv2d( |
|
in_chs=num_1x1_a, out_chs=num_3x3_b, kernel_size=3, |
|
stride=self.key_stride, padding=1, groups=groups) |
|
if b: |
|
self.c1x1_c = CatBnAct(in_chs=num_3x3_b) |
|
self.c1x1_c1 = nn.Conv2d(num_3x3_b, num_1x1_c, kernel_size=1, bias=False) |
|
self.c1x1_c2 = nn.Conv2d(num_3x3_b, inc, kernel_size=1, bias=False) |
|
else: |
|
self.c1x1_c = BnActConv2d(in_chs=num_3x3_b, out_chs=num_1x1_c + inc, kernel_size=1, stride=1) |
|
|
|
def forward(self, x): |
|
x_in = torch.cat(x, dim=1) if isinstance(x, tuple) else x |
|
if self.has_proj: |
|
if self.key_stride == 2: |
|
x_s = self.c1x1_w_s2(x_in) |
|
else: |
|
x_s = self.c1x1_w_s1(x_in) |
|
x_s1 = x_s[:, :self.num_1x1_c, :, :] |
|
x_s2 = x_s[:, self.num_1x1_c:, :, :] |
|
else: |
|
x_s1 = x[0] |
|
x_s2 = x[1] |
|
x_in = self.c1x1_a(x_in) |
|
x_in = self.c3x3_b(x_in) |
|
if self.b: |
|
x_in = self.c1x1_c(x_in) |
|
out1 = self.c1x1_c1(x_in) |
|
out2 = self.c1x1_c2(x_in) |
|
else: |
|
x_in = self.c1x1_c(x_in) |
|
out1 = x_in[:, :self.num_1x1_c, :, :] |
|
out2 = x_in[:, self.num_1x1_c:, :, :] |
|
resid = x_s1 + out1 |
|
dense = torch.cat([x_s2, out2], dim=1) |
|
return resid, dense |
|
|
|
|
|
class DPN(nn.Module): |
|
def __init__(self, small=False, num_init_features=64, k_r=96, groups=32, |
|
b=False, k_sec=(3, 4, 20, 3), inc_sec=(16, 32, 24, 128), |
|
num_classes=1000, test_time_pool=False): |
|
super(DPN, self).__init__() |
|
self.test_time_pool = test_time_pool |
|
self.b = b |
|
bw_factor = 1 if small else 4 |
|
self.k_sec = k_sec |
|
self.out_channels = [] |
|
|
|
self.blocks = OrderedDict() |
|
|
|
|
|
if small: |
|
self.blocks['conv1_1'] = InputBlock(num_init_features, kernel_size=3, padding=1) |
|
else: |
|
self.blocks['conv1_1'] = InputBlock(num_init_features, kernel_size=7, padding=3) |
|
|
|
self.out_channels.append(num_init_features) |
|
|
|
bw = 64 * bw_factor |
|
inc = inc_sec[0] |
|
r = (k_r * bw) // (64 * bw_factor) |
|
self.blocks['conv2_1'] = DualPathBlock(num_init_features, r, r, bw, inc, groups, 'proj', b) |
|
in_chs = bw + 3 * inc |
|
for i in range(2, k_sec[0] + 1): |
|
self.blocks['conv2_' + str(i)] = DualPathBlock(in_chs, r, r, bw, inc, groups, 'normal', b) |
|
in_chs += inc |
|
|
|
self.out_channels.append(in_chs) |
|
|
|
bw = 128 * bw_factor |
|
inc = inc_sec[1] |
|
r = (k_r * bw) // (64 * bw_factor) |
|
self.blocks['conv3_1'] = DualPathBlock(in_chs, r, r, bw, inc, groups, 'down', b) |
|
in_chs = bw + 3 * inc |
|
for i in range(2, k_sec[1] + 1): |
|
self.blocks['conv3_' + str(i)] = DualPathBlock(in_chs, r, r, bw, inc, groups, 'normal', b) |
|
in_chs += inc |
|
|
|
self.out_channels.append(in_chs) |
|
|
|
bw = 256 * bw_factor |
|
inc = inc_sec[2] |
|
r = (k_r * bw) // (64 * bw_factor) |
|
self.blocks['conv4_1'] = DualPathBlock(in_chs, r, r, bw, inc, groups, 'down', b) |
|
in_chs = bw + 3 * inc |
|
for i in range(2, k_sec[2] + 1): |
|
self.blocks['conv4_' + str(i)] = DualPathBlock(in_chs, r, r, bw, inc, groups, 'normal', b) |
|
in_chs += inc |
|
|
|
self.out_channels.append(in_chs) |
|
|
|
bw = 512 * bw_factor |
|
inc = inc_sec[3] |
|
r = (k_r * bw) // (64 * bw_factor) |
|
self.blocks['conv5_1'] = DualPathBlock(in_chs, r, r, bw, inc, groups, 'down', b) |
|
in_chs = bw + 3 * inc |
|
for i in range(2, k_sec[3] + 1): |
|
self.blocks['conv5_' + str(i)] = DualPathBlock(in_chs, r, r, bw, inc, groups, 'normal', b) |
|
in_chs += inc |
|
self.blocks['conv5_bn_ac'] = CatBnAct(in_chs) |
|
self.out_channels.append(in_chs) |
|
|
|
self.features = nn.Sequential(self.blocks) |
|
|
|
|
|
self.classifier = nn.Conv2d(in_chs, num_classes, kernel_size=1, bias=True) |
|
|
|
def logits(self, features): |
|
if not self.training and self.test_time_pool: |
|
x = F.avg_pool2d(features, kernel_size=7, stride=1) |
|
out = self.classifier(x) |
|
|
|
out = adaptive_avgmax_pool2d(out, pool_type='avgmax') |
|
else: |
|
x = adaptive_avgmax_pool2d(features, pool_type='avg') |
|
out = self.classifier(x) |
|
return out.view(out.size(0), -1) |
|
|
|
def forward(self, input): |
|
x = self.features(input) |
|
x = self.logits(x) |
|
return x |
|
|
|
""" PyTorch selectable adaptive pooling |
|
Adaptive pooling with the ability to select the type of pooling from: |
|
* 'avg' - Average pooling |
|
* 'max' - Max pooling |
|
* 'avgmax' - Sum of average and max pooling re-scaled by 0.5 |
|
* 'avgmaxc' - Concatenation of average and max pooling along feature dim, doubles feature dim |
|
|
|
Both a functional and a nn.Module version of the pooling is provided. |
|
|
|
Author: Ross Wightman (rwightman) |
|
""" |
|
|
|
def pooling_factor(pool_type='avg'): |
|
return 2 if pool_type == 'avgmaxc' else 1 |
|
|
|
|
|
def adaptive_avgmax_pool2d(x, pool_type='avg', padding=0, count_include_pad=False): |
|
"""Selectable global pooling function with dynamic input kernel size |
|
""" |
|
if pool_type == 'avgmaxc': |
|
x = torch.cat([ |
|
F.avg_pool2d( |
|
x, kernel_size=(x.size(2), x.size(3)), padding=padding, count_include_pad=count_include_pad), |
|
F.max_pool2d(x, kernel_size=(x.size(2), x.size(3)), padding=padding) |
|
], dim=1) |
|
elif pool_type == 'avgmax': |
|
x_avg = F.avg_pool2d( |
|
x, kernel_size=(x.size(2), x.size(3)), padding=padding, count_include_pad=count_include_pad) |
|
x_max = F.max_pool2d(x, kernel_size=(x.size(2), x.size(3)), padding=padding) |
|
x = 0.5 * (x_avg + x_max) |
|
elif pool_type == 'max': |
|
x = F.max_pool2d(x, kernel_size=(x.size(2), x.size(3)), padding=padding) |
|
else: |
|
if pool_type != 'avg': |
|
print('Invalid pool type %s specified. Defaulting to average pooling.' % pool_type) |
|
x = F.avg_pool2d( |
|
x, kernel_size=(x.size(2), x.size(3)), padding=padding, count_include_pad=count_include_pad) |
|
return x |
|
|
|
|
|
class AdaptiveAvgMaxPool2d(torch.nn.Module): |
|
"""Selectable global pooling layer with dynamic input kernel size |
|
""" |
|
def __init__(self, output_size=1, pool_type='avg'): |
|
super(AdaptiveAvgMaxPool2d, self).__init__() |
|
self.output_size = output_size |
|
self.pool_type = pool_type |
|
if pool_type == 'avgmaxc' or pool_type == 'avgmax': |
|
self.pool = nn.ModuleList([nn.AdaptiveAvgPool2d(output_size), nn.AdaptiveMaxPool2d(output_size)]) |
|
elif pool_type == 'max': |
|
self.pool = nn.AdaptiveMaxPool2d(output_size) |
|
else: |
|
if pool_type != 'avg': |
|
print('Invalid pool type %s specified. Defaulting to average pooling.' % pool_type) |
|
self.pool = nn.AdaptiveAvgPool2d(output_size) |
|
|
|
def forward(self, x): |
|
if self.pool_type == 'avgmaxc': |
|
x = torch.cat([p(x) for p in self.pool], dim=1) |
|
elif self.pool_type == 'avgmax': |
|
x = 0.5 * torch.sum(torch.stack([p(x) for p in self.pool]), 0).squeeze(dim=0) |
|
else: |
|
x = self.pool(x) |
|
return x |
|
|
|
def factor(self): |
|
return pooling_factor(self.pool_type) |
|
|
|
def __repr__(self): |
|
return self.__class__.__name__ + ' (' \ |
|
+ 'output_size=' + str(self.output_size) \ |
|
+ ', pool_type=' + self.pool_type + ')' |
|
|
|
if __name__ == "__main__": |
|
model = dpn131() |
|
print(model.features, len(model.features)) |
|
print(model.features[2]) |