import os os.environ["MKL_NUM_THREADS"] = "1" os.environ["NUMEXPR_NUM_THREADS"] = "1" os.environ["OMP_NUM_THREADS"] = "1" from os import path, makedirs import sys import numpy as np np.random.seed(1) import random random.seed(1) import torch torch.set_num_threads(1) from torch import nn from torch.autograd import Variable import timeit import cv2 os.environ["CUDA_VISIBLE_DEVICES"] = '' import gc from zoo.models import SeNet154_Unet_Double from utils import preprocess_inputs cv2.setNumThreads(0) cv2.ocl.setUseOpenCL(False) models_folder = 'weights' #/work/ if __name__ == '__main__': t0 = timeit.default_timer() seed = int(sys.argv[1]) pre_file = sys.argv[2] post_file = sys.argv[3] loc_pred_file = sys.argv[4] cls_pred_file = sys.argv[5] pred_folder = 'se154cls_{}_tuned'.format(seed) makedirs(pred_folder, exist_ok=True) models = [] snap_to_load = 'se154_cls_cce_{}_tuned_best'.format(seed) model = SeNet154_Unet_Double(pretrained=None) model = nn.DataParallel(model) print("=> loading checkpoint '{}'".format(snap_to_load)) checkpoint = torch.load(path.join(models_folder, snap_to_load), map_location='cpu') loaded_dict = checkpoint['state_dict'] sd = model.state_dict() for k in model.state_dict(): if k in loaded_dict and sd[k].size() == loaded_dict[k].size(): sd[k] = loaded_dict[k] loaded_dict = sd model.load_state_dict(loaded_dict) print("loaded checkpoint '{}' (epoch {}, best_score {})" .format(snap_to_load, checkpoint['epoch'], checkpoint['best_score'])) model.eval() models.append(model) del loaded_dict del sd del checkpoint gc.collect() with torch.no_grad(): img = cv2.imread(pre_file, cv2.IMREAD_COLOR) img2 = cv2.imread(post_file, cv2.IMREAD_COLOR) img = np.concatenate([img, img2], axis=2) img = preprocess_inputs(img) inp = [] inp.append(img) inp.append(img[::-1, ...]) inp.append(img[:, ::-1, ...]) inp.append(img[::-1, ::-1, ...]) inp = np.asarray(inp, dtype='float') inp = torch.from_numpy(inp.transpose((0, 3, 1, 2))).float() inp = Variable(inp) pred = [] for model in models: for j in range(4): msk = model(inp[j:j+1]) msk = torch.softmax(msk[:, :, ...], dim=1) msk = msk.cpu().numpy() msk[:, 0, ...] = 1 - msk[:, 0, ...] #for tta to not crash on memory if j == 0: pred.append(msk[0, ...]) elif j == 1: pred.append(msk[0, :, ::-1, :]) elif j == 2: pred.append(msk[0, :, :, ::-1]) elif j == 3: pred.append(msk[0, :, ::-1, ::-1]) pred_full = np.asarray(pred).mean(axis=0) msk = pred_full * 255 msk = msk.astype('uint8').transpose(1, 2, 0) f = os.path.basename(cls_pred_file) cv2.imwrite(path.join(pred_folder, '{0}'.format(f + '_part1.png')), msk[..., :3], [cv2.IMWRITE_PNG_COMPRESSION, 9]) cv2.imwrite(path.join(pred_folder, '{0}'.format(f + '_part2.png')), msk[..., 2:], [cv2.IMWRITE_PNG_COMPRESSION, 9]) elapsed = timeit.default_timer() - t0 print('Time: {:.3f} min'.format(elapsed / 60))