jadechoghari
commited on
Create inference.py
Browse files- inference.py +125 -0
inference.py
ADDED
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from PIL import Image
|
3 |
+
from conversation import conv_templates
|
4 |
+
from builder import load_pretrained_model # Assuming this is your custom model loader
|
5 |
+
from functools import partial
|
6 |
+
import numpy as np
|
7 |
+
|
8 |
+
# define the task categories
|
9 |
+
box_in_tasks = ['widgetcaptions', 'taperception', 'ocr', 'icon_recognition', 'widget_classification', 'example_0']
|
10 |
+
box_out_tasks = ['widget_listing', 'find_text', 'find_icons', 'find_widget', 'conversation_interaction']
|
11 |
+
no_box_tasks = ['screen2words', 'detailed_description', 'conversation_perception', 'gpt4']
|
12 |
+
|
13 |
+
# function to generate the mask
|
14 |
+
def generate_mask_for_feature(coor, raw_w, raw_h, mask=None):
|
15 |
+
"""
|
16 |
+
Generates a region mask based on provided coordinates.
|
17 |
+
Handles both point and box input.
|
18 |
+
"""
|
19 |
+
if mask is not None:
|
20 |
+
assert mask.shape[0] == raw_w and mask.shape[1] == raw_h
|
21 |
+
coor_mask = np.zeros((raw_w, raw_h))
|
22 |
+
|
23 |
+
# if it's a point (2 coordinates)
|
24 |
+
if len(coor) == 2:
|
25 |
+
span = 5 # Define the span for the point
|
26 |
+
x_min = max(0, coor[0] - span)
|
27 |
+
x_max = min(raw_w, coor[0] + span + 1)
|
28 |
+
y_min = max(0, coor[1] - span)
|
29 |
+
y_max = min(raw_h, coor[1] + span + 1)
|
30 |
+
coor_mask[int(x_min):int(x_max), int(y_min):int(y_max)] = 1
|
31 |
+
assert (coor_mask == 1).any(), f"coor: {coor}, raw_w: {raw_w}, raw_h: {raw_h}"
|
32 |
+
|
33 |
+
# if it's a box (4 coordinates)
|
34 |
+
elif len(coor) == 4:
|
35 |
+
coor_mask[coor[0]:coor[2]+1, coor[1]:coor[3]+1] = 1
|
36 |
+
if mask is not None:
|
37 |
+
coor_mask = coor_mask * mask
|
38 |
+
|
39 |
+
# Convert to torch tensor and ensure it contains non-zero values
|
40 |
+
coor_mask = torch.from_numpy(coor_mask)
|
41 |
+
assert len(coor_mask.nonzero()) != 0, "Generated mask is empty :("
|
42 |
+
|
43 |
+
return coor_mask
|
44 |
+
|
45 |
+
|
46 |
+
def infer_single_prompt(image_path, prompt, model_path, region=None, model_name="ferret_gemma", conv_mode="ferret_gemma_instruct"):
|
47 |
+
img = Image.open(image_path).convert('RGB')
|
48 |
+
|
49 |
+
# this loads the model, image processor and tokenizer
|
50 |
+
tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, None, model_name)
|
51 |
+
|
52 |
+
# define the image size (e.g., 224x224 or 336x336)
|
53 |
+
image_size = {"height": 336, "width": 336}
|
54 |
+
|
55 |
+
# process the image
|
56 |
+
image_tensor = image_processor.preprocess(
|
57 |
+
img,
|
58 |
+
return_tensors='pt',
|
59 |
+
do_resize=True,
|
60 |
+
do_center_crop=False,
|
61 |
+
size=(image_size['height'], image_size['width'])
|
62 |
+
)['pixel_values'][0].unsqueeze(0)
|
63 |
+
|
64 |
+
image_tensor = image_tensor.half().cuda()
|
65 |
+
|
66 |
+
# generate the prompt per template requirement
|
67 |
+
conv = conv_templates[conv_mode].copy()
|
68 |
+
conv.append_message(conv.roles[0], prompt)
|
69 |
+
conv.append_message(conv.roles[1], None)
|
70 |
+
prompt_input = conv.get_prompt()
|
71 |
+
|
72 |
+
# tokenize prompt
|
73 |
+
input_ids = tokenizer(prompt_input, return_tensors='pt')['input_ids'].cuda()
|
74 |
+
|
75 |
+
# region mask logic (if region is provided)
|
76 |
+
region_masks = None
|
77 |
+
if region is not None:
|
78 |
+
raw_w, raw_h = img.size
|
79 |
+
region_masks = generate_mask_for_feature(region, raw_w, raw_h).unsqueeze(0).cuda().half()
|
80 |
+
region_masks = [[region_masks]] # Wrap the mask in lists as expected by the model
|
81 |
+
|
82 |
+
# generate model output
|
83 |
+
with torch.inference_mode():
|
84 |
+
# Use region_masks in model's forward call
|
85 |
+
model.orig_forward = model.forward
|
86 |
+
model.forward = partial(
|
87 |
+
model.orig_forward,
|
88 |
+
region_masks=region_masks
|
89 |
+
)
|
90 |
+
output_ids = model.generate(
|
91 |
+
input_ids,
|
92 |
+
images=image_tensor,
|
93 |
+
max_new_tokens=1024,
|
94 |
+
num_beams=1,
|
95 |
+
region_masks=region_masks, # pass the region mask to the model
|
96 |
+
image_sizes=[img.size]
|
97 |
+
)
|
98 |
+
model.forward = model.orig_forward
|
99 |
+
|
100 |
+
# we decode the output
|
101 |
+
output_text = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0]
|
102 |
+
return output_text.strip()
|
103 |
+
|
104 |
+
# We also define a task-specific inference function
|
105 |
+
def infer_ui_task(image_path, prompt, model_path, task, region=None):
|
106 |
+
"""
|
107 |
+
Handles task types: box_in_tasks, box_out_tasks, no_box_tasks.
|
108 |
+
"""
|
109 |
+
if task in box_in_tasks and region is None:
|
110 |
+
raise ValueError(f"Task {task} requires a bounding box region.")
|
111 |
+
|
112 |
+
if task in box_in_tasks:
|
113 |
+
print(f"Processing {task} with bounding box region.")
|
114 |
+
return infer_single_prompt(image_path, prompt, model_path, region)
|
115 |
+
|
116 |
+
elif task in box_out_tasks:
|
117 |
+
print(f"Processing {task} without bounding box region.")
|
118 |
+
return infer_single_prompt(image_path, prompt, model_path)
|
119 |
+
|
120 |
+
elif task in no_box_tasks:
|
121 |
+
print(f"Processing {task} without image or bounding box.")
|
122 |
+
return infer_single_prompt(image_path, prompt, model_path)
|
123 |
+
|
124 |
+
else:
|
125 |
+
raise ValueError(f"Unknown task type: {task}")
|