jadechoghari
commited on
Create mm_utils.py
Browse files- mm_utils.py +260 -0
mm_utils.py
ADDED
@@ -0,0 +1,260 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from PIL import Image
|
2 |
+
from io import BytesIO
|
3 |
+
import base64
|
4 |
+
import torch
|
5 |
+
import math
|
6 |
+
import ast
|
7 |
+
from typing import Optional, Callable
|
8 |
+
|
9 |
+
from transformers import StoppingCriteria
|
10 |
+
from ferretui.constants import IMAGE_TOKEN_INDEX
|
11 |
+
|
12 |
+
|
13 |
+
def select_best_resolution(original_size, possible_resolutions):
|
14 |
+
"""
|
15 |
+
Selects the best resolution from a list of possible resolutions based on the original size.
|
16 |
+
|
17 |
+
Args:
|
18 |
+
original_size (tuple): The original size of the image in the format (width, height).
|
19 |
+
possible_resolutions (list): A list of possible resolutions in the format [(width1, height1), (width2, height2), ...].
|
20 |
+
|
21 |
+
Returns:
|
22 |
+
tuple: The best fit resolution in the format (width, height).
|
23 |
+
"""
|
24 |
+
original_width, original_height = original_size
|
25 |
+
best_fit = None
|
26 |
+
max_effective_resolution = 0
|
27 |
+
min_wasted_resolution = float('inf')
|
28 |
+
|
29 |
+
for width, height in possible_resolutions:
|
30 |
+
scale = min(width / original_width, height / original_height)
|
31 |
+
downscaled_width, downscaled_height = int(original_width * scale), int(original_height * scale)
|
32 |
+
effective_resolution = min(downscaled_width * downscaled_height, original_width * original_height)
|
33 |
+
wasted_resolution = (width * height) - effective_resolution
|
34 |
+
|
35 |
+
if effective_resolution > max_effective_resolution or (effective_resolution == max_effective_resolution and wasted_resolution < min_wasted_resolution):
|
36 |
+
max_effective_resolution = effective_resolution
|
37 |
+
min_wasted_resolution = wasted_resolution
|
38 |
+
best_fit = (width, height)
|
39 |
+
|
40 |
+
return best_fit
|
41 |
+
|
42 |
+
|
43 |
+
def resize_and_pad_image(image, target_resolution, is_pad=False):
|
44 |
+
"""
|
45 |
+
Resize and pad an image to a target resolution while maintaining aspect ratio.
|
46 |
+
Args:
|
47 |
+
image (PIL.Image.Image): The input image.
|
48 |
+
target_resolution (tuple): The target resolution (width, height) of the image.
|
49 |
+
Returns:
|
50 |
+
PIL.Image.Image: The resized and padded image.
|
51 |
+
"""
|
52 |
+
original_width, original_height = image.size
|
53 |
+
target_width, target_height = target_resolution
|
54 |
+
|
55 |
+
if is_pad:
|
56 |
+
scale_w = target_width / original_width
|
57 |
+
scale_h = target_height / original_height
|
58 |
+
|
59 |
+
if scale_w < scale_h:
|
60 |
+
new_width = target_width
|
61 |
+
new_height = min(math.ceil(original_height * scale_w), target_height)
|
62 |
+
else:
|
63 |
+
new_height = target_height
|
64 |
+
new_width = min(math.ceil(original_width * scale_h), target_width)
|
65 |
+
|
66 |
+
# Resize the image
|
67 |
+
resized_image = image.resize((new_width, new_height))
|
68 |
+
|
69 |
+
new_image = Image.new('RGB', (target_width, target_height), (0, 0, 0))
|
70 |
+
paste_x = (target_width - new_width) // 2
|
71 |
+
paste_y = (target_height - new_height) // 2
|
72 |
+
new_image.paste(resized_image, (paste_x, paste_y))
|
73 |
+
else:
|
74 |
+
new_image = image.resize((target_width, target_height))
|
75 |
+
|
76 |
+
return new_image
|
77 |
+
|
78 |
+
|
79 |
+
def divide_to_patches(image, patch_size):
|
80 |
+
"""
|
81 |
+
Divides an image into patches of a specified size.
|
82 |
+
|
83 |
+
Args:
|
84 |
+
image (PIL.Image.Image): The input image.
|
85 |
+
patch_size (int): The size of each patch.
|
86 |
+
|
87 |
+
Returns:
|
88 |
+
list: A list of PIL.Image.Image objects representing the patches.
|
89 |
+
"""
|
90 |
+
patches = []
|
91 |
+
width, height = image.size
|
92 |
+
for i in range(0, height, patch_size):
|
93 |
+
for j in range(0, width, patch_size):
|
94 |
+
box = (j, i, j + patch_size, i + patch_size)
|
95 |
+
patch = image.crop(box)
|
96 |
+
patches.append(patch)
|
97 |
+
|
98 |
+
return patches
|
99 |
+
|
100 |
+
|
101 |
+
def get_anyres_image_grid_shape(image_size, grid_pinpoints, patch_size):
|
102 |
+
"""
|
103 |
+
Calculate the shape of the image patch grid after the preprocessing for images of any resolution.
|
104 |
+
|
105 |
+
Args:
|
106 |
+
image_size (tuple): The size of the input image in the format (width, height).
|
107 |
+
grid_pinpoints (str): A string representation of a list of possible resolutions.
|
108 |
+
patch_size (int): The size of each image patch.
|
109 |
+
|
110 |
+
Returns:
|
111 |
+
tuple: The shape of the image patch grid in the format (width, height).
|
112 |
+
"""
|
113 |
+
if type(grid_pinpoints) is list:
|
114 |
+
possible_resolutions = grid_pinpoints
|
115 |
+
else:
|
116 |
+
possible_resolutions = ast.literal_eval(grid_pinpoints)
|
117 |
+
width, height = select_best_resolution(image_size, possible_resolutions)
|
118 |
+
return width // patch_size, height // patch_size
|
119 |
+
|
120 |
+
|
121 |
+
def process_anyres_image(image, processor, grid_pinpoints, image_process_func: Optional[Callable] = None):
|
122 |
+
"""
|
123 |
+
Process an image with variable resolutions.
|
124 |
+
|
125 |
+
Args:
|
126 |
+
image (PIL.Image.Image): The input image to be processed.
|
127 |
+
processor: The image processor object.
|
128 |
+
grid_pinpoints (str): A string representation of a list of possible resolutions.
|
129 |
+
|
130 |
+
Returns:
|
131 |
+
torch.Tensor: A tensor containing the processed image patches.
|
132 |
+
"""
|
133 |
+
if type(grid_pinpoints) is list:
|
134 |
+
possible_resolutions = grid_pinpoints
|
135 |
+
else:
|
136 |
+
possible_resolutions = ast.literal_eval(grid_pinpoints)
|
137 |
+
|
138 |
+
best_resolution = select_best_resolution(image.size, possible_resolutions)
|
139 |
+
|
140 |
+
# FIXME: not sure if do_pad or undo_pad may affect the referring side
|
141 |
+
image_padded = resize_and_pad_image(image, best_resolution, is_pad=False)
|
142 |
+
|
143 |
+
patches = divide_to_patches(image_padded, processor.crop_size['height'])
|
144 |
+
|
145 |
+
if image_process_func:
|
146 |
+
resized_image_h, resized_image_w = image_process_func.keywords['size']
|
147 |
+
image_original_resize = image.resize((resized_image_w, resized_image_h))
|
148 |
+
image_patches = [image_original_resize] + patches
|
149 |
+
image_patches = [image_process_func(image_patch)['pixel_values'][0]
|
150 |
+
for image_patch in image_patches]
|
151 |
+
else:
|
152 |
+
image_original_resize = image.resize((processor.size['shortest_edge'], processor.size['shortest_edge']))
|
153 |
+
image_patches = [image_original_resize] + patches
|
154 |
+
image_patches = [processor.preprocess(image_patch, return_tensors='pt')['pixel_values'][0]
|
155 |
+
for image_patch in image_patches]
|
156 |
+
|
157 |
+
return torch.stack(image_patches, dim=0)
|
158 |
+
|
159 |
+
|
160 |
+
def load_image_from_base64(image):
|
161 |
+
return Image.open(BytesIO(base64.b64decode(image)))
|
162 |
+
|
163 |
+
|
164 |
+
def expand2square(pil_img, background_color):
|
165 |
+
width, height = pil_img.size
|
166 |
+
if width == height:
|
167 |
+
return pil_img
|
168 |
+
elif width > height:
|
169 |
+
result = Image.new(pil_img.mode, (width, width), background_color)
|
170 |
+
result.paste(pil_img, (0, (width - height) // 2))
|
171 |
+
return result
|
172 |
+
else:
|
173 |
+
result = Image.new(pil_img.mode, (height, height), background_color)
|
174 |
+
result.paste(pil_img, ((height - width) // 2, 0))
|
175 |
+
return result
|
176 |
+
|
177 |
+
|
178 |
+
def process_images(images, image_processor, model_cfg, image_process_func: Optional[Callable] = None):
|
179 |
+
image_aspect_ratio = getattr(model_cfg, "image_aspect_ratio", None)
|
180 |
+
new_images = []
|
181 |
+
if image_aspect_ratio == 'pad':
|
182 |
+
for image in images:
|
183 |
+
image = expand2square(image, tuple(int(x*255) for x in image_processor.image_mean))
|
184 |
+
image = image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0]
|
185 |
+
new_images.append(image)
|
186 |
+
elif image_aspect_ratio == "anyres":
|
187 |
+
# image_processor(images, return_tensors='pt', do_resize=True, do_center_crop=False, size=[image_h, image_w])['pixel_values']
|
188 |
+
for image in images:
|
189 |
+
image = process_anyres_image(image, image_processor, model_cfg.image_grid_pinpoints, image_process_func=image_process_func)
|
190 |
+
new_images.append(image)
|
191 |
+
else:
|
192 |
+
return image_processor(images, return_tensors='pt')['pixel_values']
|
193 |
+
if all(x.shape == new_images[0].shape for x in new_images):
|
194 |
+
new_images = torch.stack(new_images, dim=0)
|
195 |
+
return new_images
|
196 |
+
|
197 |
+
|
198 |
+
def tokenizer_image_token(prompt, tokenizer, image_token_index=IMAGE_TOKEN_INDEX, return_tensors=None):
|
199 |
+
prompt_chunks = [tokenizer(chunk).input_ids for chunk in prompt.split('<image>')]
|
200 |
+
|
201 |
+
def insert_separator(X, sep):
|
202 |
+
return [ele for sublist in zip(X, [sep]*len(X)) for ele in sublist][:-1]
|
203 |
+
|
204 |
+
input_ids = []
|
205 |
+
offset = 0
|
206 |
+
if len(prompt_chunks) > 0 and len(prompt_chunks[0]) > 0 and prompt_chunks[0][0] == tokenizer.bos_token_id:
|
207 |
+
offset = 1
|
208 |
+
input_ids.append(prompt_chunks[0][0])
|
209 |
+
|
210 |
+
for x in insert_separator(prompt_chunks, [image_token_index] * (offset + 1)):
|
211 |
+
input_ids.extend(x[offset:])
|
212 |
+
|
213 |
+
if return_tensors is not None:
|
214 |
+
if return_tensors == 'pt':
|
215 |
+
return torch.tensor(input_ids, dtype=torch.long)
|
216 |
+
raise ValueError(f'Unsupported tensor type: {return_tensors}')
|
217 |
+
return input_ids
|
218 |
+
|
219 |
+
|
220 |
+
def get_model_name_from_path(model_path):
|
221 |
+
model_path = model_path.strip("/")
|
222 |
+
model_paths = model_path.split("/")
|
223 |
+
if model_paths[-1].startswith('checkpoint-'):
|
224 |
+
return model_paths[-2] + "_" + model_paths[-1]
|
225 |
+
else:
|
226 |
+
return model_paths[-1]
|
227 |
+
|
228 |
+
class KeywordsStoppingCriteria(StoppingCriteria):
|
229 |
+
def __init__(self, keywords, tokenizer, input_ids):
|
230 |
+
self.keywords = keywords
|
231 |
+
self.keyword_ids = []
|
232 |
+
self.max_keyword_len = 0
|
233 |
+
for keyword in keywords:
|
234 |
+
cur_keyword_ids = tokenizer(keyword).input_ids
|
235 |
+
if len(cur_keyword_ids) > 1 and cur_keyword_ids[0] == tokenizer.bos_token_id:
|
236 |
+
cur_keyword_ids = cur_keyword_ids[1:]
|
237 |
+
if len(cur_keyword_ids) > self.max_keyword_len:
|
238 |
+
self.max_keyword_len = len(cur_keyword_ids)
|
239 |
+
self.keyword_ids.append(torch.tensor(cur_keyword_ids))
|
240 |
+
self.tokenizer = tokenizer
|
241 |
+
self.start_len = input_ids.shape[1]
|
242 |
+
|
243 |
+
def call_for_batch(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
|
244 |
+
offset = min(output_ids.shape[1] - self.start_len, self.max_keyword_len)
|
245 |
+
self.keyword_ids = [keyword_id.to(output_ids.device) for keyword_id in self.keyword_ids]
|
246 |
+
for keyword_id in self.keyword_ids:
|
247 |
+
truncated_output_ids = output_ids[0, -keyword_id.shape[0]:]
|
248 |
+
if torch.equal(truncated_output_ids, keyword_id):
|
249 |
+
return True
|
250 |
+
outputs = self.tokenizer.batch_decode(output_ids[:, -offset:], skip_special_tokens=True)[0]
|
251 |
+
for keyword in self.keywords:
|
252 |
+
if keyword in outputs:
|
253 |
+
return True
|
254 |
+
return False
|
255 |
+
|
256 |
+
def __call__(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
|
257 |
+
outputs = []
|
258 |
+
for i in range(output_ids.shape[0]):
|
259 |
+
outputs.append(self.call_for_batch(output_ids[i].unsqueeze(0), scores))
|
260 |
+
return all(outputs)
|